BABELOMICS: a suite of web tools for functional annotation and analysis of groups of genes in high-throughput experiments

被引:189
作者
Al-Shahrour, F
Minguez, P
Vaquerizas, JM
Conde, L
Dopazo, J
机构
[1] Ctr Invest Principe Felipe, Funct Genom Node, INB, Bioinformat Dept, E-46013 Valencia, Spain
[2] CNIO, Bioinformat Unit, Madrid 28029, Spain
关键词
D O I
10.1093/nar/gki456
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We present Babelomics, a complete suite of web tools for the functional analysis of groups of genes in high-throughput experiments, which includes the use of information on Gene Ontology terms, interpro motifs, KEGG pathways, Swiss-Prot keywords, analysis of predicted transcription factor binding sites, chromosomal positions and presence in tissues with determined histological characteristics, through five integrated modules: FatiGO (fast assignment and transference of information), FatiWise, transcription factor association test, GenomeGO and tissues mining tool, respectively. Additionally, another module, FatiScan, provides a new procedure that integrates biological information in combination with experimental results in order to find groups of genes with modest but coordinate significant differential behaviour. FatiScan is highly sensitive and is capable of finding significant asymmetries in the distribution of genes of common function across a list of ordered genes even if these asymmetries were not extreme. The strong multiple-testing nature of the contrasts made by the tools is taken into account. All the tools are integrated in the gene expression analysis package GEPAS. Babelomics is the natural evolution of our tool FatiGO (which analysed almost 22 000 experiments during the last year) to include more sources on information and new modes of using it. Babelomics can be found at http://www.babelomics.org.
引用
收藏
页码:W460 / W464
页数:5
相关论文
共 20 条
[1]   FatiGO:: a web tool for finding significant associations of Gene Ontology terms with groups of genes [J].
Al-Shahrour, F ;
Díaz-Uriarte, R ;
Dopazo, J .
BIOINFORMATICS, 2004, 20 (04) :578-580
[2]  
Al-Shahrour F, 2005, DATA ANALYSIS AND VISUALIZATION IN GENOMICS AND PROTEOMICS, P99, DOI 10.1002/0470094419.ch7
[3]  
[Anonymous], 1993, Resampling-based multiple testing: Examples and methods for P-value adjustment
[4]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[5]  
Benjamini Y, 2001, ANN STAT, V29, P1165
[6]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[7]   An overview of ensembl [J].
Birney, E ;
Andrews, TD ;
Bevan, P ;
Caccamo, M ;
Chen, Y ;
Clarke, L ;
Coates, G ;
Cuff, J ;
Curwen, V ;
Cutts, T ;
Down, T ;
Eyras, E ;
Fernandez-Suarez, XM ;
Gane, P ;
Gibbins, B ;
Gilbert, J ;
Hammond, M ;
Hotz, HR ;
Iyer, V ;
Jekosch, K ;
Kahari, A ;
Kasprzyk, A ;
Keefe, D ;
Keenan, S ;
Lehvaslaiho, H ;
McVicker, G ;
Melsopp, C ;
Meidl, P ;
Mongin, E ;
Pettett, R ;
Potter, S ;
Proctor, G ;
Rae, M ;
Searle, S ;
Slater, G ;
Smedley, D ;
Smith, J ;
Spooner, W ;
Stabenau, A ;
Stalker, J ;
Storey, R ;
Ureta-Vidal, A ;
Woodwark, KC ;
Cameron, G ;
Durbin, R ;
Cox, A ;
Hubbard, T ;
Clamp, M .
GENOME RESEARCH, 2004, 14 (05) :925-928
[8]  
BORGES JL, 2000, INQUISITIONS
[9]  
Díaz-Uriarte R, 2005, DATA ANALYSIS AND VISUALIZATION IN GENOMICS AND PROTEOMICS, P193, DOI 10.1002/0470094419.ch12
[10]   Integrating 'omic' information: a bridge between genomics and systems biology [J].
Ge, H ;
Walhout, AJM ;
Vidal, M .
TRENDS IN GENETICS, 2003, 19 (10) :551-560