G1 checkpoint failure and increased tumor susceptibility in mice lacking the novel p53 target Ptprv

被引:32
作者
Doumont, G
Martoriati, A
Beekman, C
Bogaerts, S
Mee, PJ
Bureau, F
Colombo, E
Alcalay, M
Bellefroid, E
Marchesi, F
Scanziani, E
Pelicci, PG
Marine, JC
机构
[1] State Univ Ghent VIB, Lab Mol Canc Biol, B-9052 Ghent, Belgium
[2] Free Univ Brussels, IBMM, Unit Mol Embryol, Gosselies, Belgium
[3] Univ Edinburgh, Inst Stem Cell Res, Edinburgh, Midlothian, Scotland
[4] Free Univ Brussels, IBMM, Immunol Unit, Gosselies, Belgium
[5] European Inst Oncol, Dept Expt Oncol, Milan, Italy
[6] FIRC Inst Mol Oncol, Milan, Italy
[7] Univ Milan, Dept Vet Pathol, Milan, Italy
关键词
DNA damage; growth arrest; p53; Ptprv; skin carcinogenesis;
D O I
10.1038/sj.emboj.7600769
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In response to DNA damage, p53 activates a G1 cell cycle checkpoint, in part through induction of the cyclin-dependent kinase inhibitor p21(Waf1/Cip1). Here we report the identification of a new direct p53 target, Ptprv ( or ESP), encoding a transmembrane tyrosine phosphatase. Ptprv transcription is dramatically and preferentially increased in cultured cells undergoing p53-dependent cell cycle arrest, but not in cells undergoing p53-mediated apoptosis. This observation was further confirmed in vivo using a Ptprv null-reporter mouse line. A p53-responsive element is present in the Ptprv promoter and p53 is recruited to this site in vivo. Importantly, while p53-dependent apoptosis is intact in mice lacking Ptprv, Ptprv-null fibroblasts and epithelial cells of the small intestine are defective in G1 checkpoint control. Thus, Ptprv is a new direct p53 target and a key mediator of p53-induced cell cycle arrest. Finally, Ptprv loss enhances the formation of epidermal papillomas after exposure to chemical carcinogens, suggesting that Ptprv acts to suppress tumor formation in vivo.
引用
收藏
页码:3093 / 3103
页数:11
相关论文
共 49 条
  • [11] Regulation of p53 downstream genes
    El-Deiry, WS
    [J]. SEMINARS IN CANCER BIOLOGY, 1998, 8 (05) : 345 - 357
  • [12] DEFINITION OF A CONSENSUS BINDING-SITE FOR P53
    ELDEIRY, WS
    KERN, SE
    PIETENPOL, JA
    KINZLER, KW
    VOGELSTEIN, B
    [J]. NATURE GENETICS, 1992, 1 (01) : 45 - 49
  • [13] WAF1, A POTENTIAL MEDIATOR OF P53 TUMOR SUPPRESSION
    ELDEIRY, WS
    TOKINO, T
    VELCULESCU, VE
    LEVY, DB
    PARSONS, R
    TRENT, JM
    LIN, D
    MERCER, WE
    KINZLER, KW
    VOGELSTEIN, B
    [J]. CELL, 1993, 75 (04) : 817 - 825
  • [14] Association of human protein tyrosine phosphatase kappa with members of the armadillo family
    Fuchs, M
    Muller, T
    Lerch, MM
    Ullrich, A
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (28) : 16712 - 16719
  • [15] Transgenic mouse model for studying the transcriptional activity of the p53 protein: Age- and tissue-dependent changes in radiation-induced activation during embryogenesis
    Gottlieb, E
    Haffner, R
    King, A
    Asher, G
    Gruss, P
    Lonai, P
    Oren, M
    [J]. EMBO JOURNAL, 1997, 16 (06) : 1381 - 1390
  • [16] HARVEY M, 1993, ONCOGENE, V8, P2457
  • [17] The transmembrane receptor protein tyrosine phosphatase DEP1 interacts with p120ctn
    Holsinger, LJ
    Ward, K
    Duffield, B
    Zachwieja, J
    Jallal, B
    [J]. ONCOGENE, 2002, 21 (46) : 7067 - 7076
  • [18] Inoue K, 2000, GENE DEV, V14, P1797
  • [19] Puma is an essential mediator of p53-dependent and -independent apoptotic pathways
    Jeffers, JR
    Parganas, E
    Lee, Y
    Yang, CY
    Wang, JL
    Brennan, J
    MacLean, KH
    Han, JW
    Chittenden, T
    Ihle, JN
    McKinnon, PJ
    Cleveland, JL
    Zambetti, GP
    [J]. CANCER CELL, 2003, 4 (04) : 321 - 328
  • [20] DNA microarray analysis of genes involved in p53 mediated apoptosis: activation of Apaf-1
    Kannan, K
    Kaminski, N
    Rechavi, G
    Jakob-Hirsch, J
    Amariglio, N
    Givol, D
    [J]. ONCOGENE, 2001, 20 (26) : 3449 - 3455