The average-case complexity of determining the majority

被引:32
作者
Alonso, L
Reingold, EM
Schott, R
机构
[1] ENS,F-75005 PARIS,FRANCE
[2] UNIV ILLINOIS,DEPT COMP SCI,URBANA,IL 61801
关键词
algorithm analysis; decision trees; lower bounds; average case;
D O I
10.1137/S0097539794275914
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a set of n elements each of which is either red or blue, it is known that in the worst case n - v(n) pairwise equal/not equal color comparisons are necessary and sufficient to determine the majority color, where v(n) is the number of 1-bits in the binary representation of n. We prove that 2n/3 - root 8n/9 pi + O(log n) such comparisons are necessary and sufficient in the average case.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 11 条
[1]  
Alexanderson G. L., 1985, WL PUTNAM MATH COMPE
[2]   DETERMINING THE MAJORITY [J].
ALONSO, L ;
REINGOLD, EM ;
SCHOTT, R .
INFORMATION PROCESSING LETTERS, 1993, 47 (05) :253-255
[3]  
[Anonymous], 1990, MATH ANAL ALGORITHMS
[4]  
Feller W., 1968, INTRO PROBABILITY TH
[5]   COIN-WEIGHING PROBLEMS [J].
GUY, RK ;
NOWAKOWSKI, RJ .
AMERICAN MATHEMATICAL MONTHLY, 1995, 102 (02) :164-167
[6]  
HAKIMI SL, 1984, J ALGORITHM, V5, P526, DOI 10.1016/0196-6774(84)90005-1
[7]  
HILLMAN AP, 1975, WL PUTNAM MATH COMPE, V82, P905
[8]  
REINGOLD EM, 1977, COMBINATORIAL ALGORI
[9]   ON COMPUTING MAJORITY BY COMPARISONS [J].
SAKS, ME ;
WERMAN, M .
COMBINATORICA, 1991, 11 (04) :383-387
[10]   A PARALLEL FAULT IDENTIFICATION ALGORITHM [J].
SCHMEICHEL, E ;
HAKIMI, SL ;
OTSUKA, M ;
SULLIVAN, G .
JOURNAL OF ALGORITHMS, 1990, 11 (02) :231-241