Efficient multilevel brain tumor segmentation with integrated Bayesian model classification

被引:277
作者
Corso, Jason J. [1 ]
Sharon, Eitan [2 ]
Dube, Shishir [3 ]
El-Saden, Suzie [4 ]
Sinha, Usha [4 ]
Yuille, Alan [5 ,6 ]
机构
[1] Univ Calif Los Angeles, Dept Radiol Sci, Los Angeles, CA 90095 USA
[2] Technion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, Israel
[3] Univ Calif Los Angeles, Dept Biomed Engn, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Dept Radiol Sci, Los Angeles, CA 90095 USA
[5] Univ Calif Los Angeles, Dept Stat, Los Angeles, CA 90095 USA
[6] Univ Calif Los Angeles, Dept Psychol, Los Angeles, CA 90095 USA
关键词
Bayesian affinity; brain tumor; glioblastoma multiforme; multilevel segmentation; normalized cuts;
D O I
10.1109/TMI.2007.912817
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a new method for automatic segmentation of heterogeneous image data that takes a step toward bridging the gap between bottom-up affinity-based segmentation methods and top-down generative model based approaches. The main contribution of the paper is a Bayesian formulation for incorporating soft model assignments into the calculation of affinities, which are conventionally model free. We integrate the resulting model-aware affinities into the multilevel segmentation by weighted aggregation algorithm, and apply the technique to the task of detecting and segmenting brain tumor and edema in multichannel magnetic resonance (MR) volumes. The computationally efficient method runs orders of magnitude faster than current state-of-the-art techniques giving comparable or improved results. Our quantitative results indicate the benefit of incorporating model-aware affinities into the segmentation process for the difficult case of glioblastoma multi-forme brain tumor.
引用
收藏
页码:629 / 640
页数:12
相关论文
共 40 条
[21]   Cerebral tumor volume calculations using planimetric and eigenimage analysis [J].
Peck, DJ ;
Windham, JP ;
Emery, LL ;
SoltanianZadeh, H ;
Hearshen, DO ;
Mikkelsen, T .
MEDICAL PHYSICS, 1996, 23 (12) :2035-2042
[22]   APPLICATION OF FUZZY C-MEANS SEGMENTATION TECHNIQUE FOR TISSUE DIFFERENTIATION IN MR-IMAGES OF A HEMORRHAGIC GLIOBLASTOMA-MULTIFORME [J].
PHILLIPS, WE ;
VELTHUIZEN, RP ;
PHUPHANICH, S ;
HALL, LO ;
CLARKE, LP ;
SILBIGER, ML .
MAGNETIC RESONANCE IMAGING, 1995, 13 (02) :277-290
[23]   A brain tumor segmentation framework based on outlier detection [J].
Prastawa, M ;
Bullitt, E ;
Ho, S ;
Gerig, G .
MEDICAL IMAGE ANALYSIS, 2004, 8 (03) :275-283
[24]   Automatic brain tumor segmentation by subject specific modification of atlas priors [J].
Prastawa, M ;
Bullitt, E ;
Moon, N ;
Van Leemput, K ;
Gerig, G .
ACADEMIC RADIOLOGY, 2003, 10 (12) :1341-1348
[25]  
Sharon E, 2001, PROC CVPR IEEE, P469
[26]  
SHARON E, 2000, P IEEE C COMP VIS PA, V1, P770
[27]   Hierarchy and adaptivity in segmenting visual scenes [J].
Sharon, Eitan ;
Galun, Meirav ;
Sharon, Dahlia ;
Basri, Ronen ;
Brandt, Achi .
NATURE, 2006, 442 (7104) :810-813
[28]   Normalized cuts and image segmentation [J].
Shi, JB ;
Malik, J .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2000, 22 (08) :888-905
[29]  
Smirniotopoulos JG, 1999, NEUROIMAG CLIN N AM, V9, P595
[30]   Advances in functional and structural MR image analysis and implementation as FSL [J].
Smith, SM ;
Jenkinson, M ;
Woolrich, MW ;
Beckmann, CF ;
Behrens, TEJ ;
Johansen-Berg, H ;
Bannister, PR ;
De Luca, M ;
Drobnjak, I ;
Flitney, DE ;
Niazy, RK ;
Saunders, J ;
Vickers, J ;
Zhang, YY ;
De Stefano, N ;
Brady, JM ;
Matthews, PM .
NEUROIMAGE, 2004, 23 :S208-S219