Quantum phase-space picture of Bose-Einstein condensates in a double well

被引:139
作者
Mahmud, KW
Perry, H
Reinhardt, WP
机构
[1] Univ Washington, Dept Phys, Seattle, WA 98195 USA
[2] Univ Washington, Dept Chem, Seattle, WA 98195 USA
来源
PHYSICAL REVIEW A | 2005年 / 71卷 / 02期
关键词
D O I
10.1103/PhysRevA.71.023615
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a quantum phase-space model of the Bose-Einstein condensate (BEC) in a double-well potential. In a quantum two-mode approximation we examine the eigenvectors and eigenvalues and find that the energy correlation diagram indicates a transition from a delocalized to a fragmented regime. Phase-space information is extracted from the stationary quantum states using the Husimi distribution function. We show that the mean-field phase-space characteristics of a nonrigid physical pendulum arises from the exact quantum states, and that only 4-8 particles per well are needed to reach the semiclassical limit. For a driven double-well BEC, we show that the classical chaotic dynamics is manifest in the dynamics of the quantum states. Phase-space analogy also suggests that a pi phase-displaced wave packet put on the unstable fixed point on a separatrix bifurcates to create a superposition of two pendulum rotor states-a macroscopic superposition state of BEC. We show that the choice of initial barrier height and ramping, following a pi phase imprinting on the condensate, can be used to generate controlled entangled number states with tunable extremity and sharpness.
引用
收藏
页数:17
相关论文
共 44 条
[1]  
Anderson P. W., 1964, LECT MANY BODY PROBL, V2
[2]   Observation of interference between two Bose condensates [J].
Andrews, MR ;
Townsend, CG ;
Miesner, HJ ;
Durfee, DS ;
Kurn, DM ;
Ketterle, W .
SCIENCE, 1997, 275 (5300) :637-641
[3]   Dynamics of a two-mode Bose-Einstein condensate beyond mean-field theory [J].
Anglin, JR ;
Vardi, A .
PHYSICAL REVIEW A, 2001, 64 (01) :9
[4]   Dark solitons in Bose-Einstein condensates [J].
Burger, S ;
Bongs, K ;
Dettmer, S ;
Ertmer, W ;
Sengstock, K ;
Sanpera, A ;
Shlyapnikov, GV ;
Lewenstein, M .
PHYSICAL REVIEW LETTERS, 1999, 83 (25) :5198-5201
[5]   Coherence, correlations, and collisions: What one learns about Bose-Einstein condensates from their decay [J].
Burt, EA ;
Ghrist, RW ;
Myatt, CJ ;
Holland, MJ ;
Cornell, EA ;
Wieman, CE .
PHYSICAL REVIEW LETTERS, 1997, 79 (03) :337-340
[6]   Quantum superposition states of Bose-Einstein condensates [J].
Cirac, JI ;
Lewenstein, M ;
Molmer, K ;
Zoller, P .
PHYSICAL REVIEW A, 1998, 57 (02) :1208-1218
[7]   States without a linear counterpart in Bose-Einstein condensates [J].
D'Agosta, R ;
Presilla, C .
PHYSICAL REVIEW A, 2002, 65 (04) :436091-436097
[8]   QUANTUM DYNAMICAL TUNNELING IN BOUND-STATES [J].
DAVIS, MJ ;
HELLER, EJ .
JOURNAL OF CHEMICAL PHYSICS, 1981, 75 (01) :246-254
[9]   Generating solitons by phase engineering of a Bose-Einstein condensate [J].
Denschlag, J ;
Simsarian, JE ;
Feder, DL ;
Clark, CW ;
Collins, LA ;
Cubizolles, J ;
Deng, L ;
Hagley, EW ;
Helmerson, K ;
Reinhardt, WP ;
Rolston, SL ;
Schneider, BI ;
Phillips, WD .
SCIENCE, 2000, 287 (5450) :97-101
[10]   Relative number squeezing in Bose-Einstein condensates [J].
Dunningham, JA ;
Burnett, K ;
Edwards, M .
PHYSICAL REVIEW A, 2001, 64 (01) :156011-156014