Nonlinear discretization scheme for the density-gradient equations

被引:12
作者
Ancona, MG [1 ]
Biegel, BA [1 ]
机构
[1] USN, Res Lab, Div Elect Sci & Technol, Washington, DC 20375 USA
来源
2000 INTERNATIONAL CONFERENCE ON SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES | 2000年
关键词
D O I
10.1109/SISPAD.2000.871241
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A nonlinear three-point discretization of the density-gradient equations is presented. The new method, an exponential-fitting scheme, is evaluated using numerical examples involving both quantum confinement and tunneling. The nonlinear discretization is shown to perform far better than the conventional linear version allowing for a substantial easing in the mesh refinement especially in tunneling problems.
引用
收藏
页码:196 / 199
页数:4
相关论文
共 12 条
[1]   A NOTE ON THE FERMI-DIRAC INTEGRAL FUNCTION [J].
AGUILERANAVARRO, VC ;
ESTEVEZ, GA ;
KOSTECKI, A .
JOURNAL OF APPLIED PHYSICS, 1988, 63 (08) :2848-2850
[2]   MACROSCOPIC DESCRIPTION OF QUANTUM-MECHANICAL TUNNELING [J].
ANCONA, MG .
PHYSICAL REVIEW B, 1990, 42 (02) :1222-1233
[3]   MACROSCOPIC PHYSICS OF THE SILICON INVERSION LAYER [J].
ANCONA, MG ;
TIERSTEN, HF .
PHYSICAL REVIEW B, 1987, 35 (15) :7959-7965
[4]  
ANCONA MG, 1999, P SISPAD, P235
[5]  
ANCONA MG, 2000, IN PRESS IEEE T ELEC
[6]  
ANCONA MG, 1990, P CO MP EL WRKSHP CH
[7]  
Asenov A., 1999, International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318), P535, DOI 10.1109/IEDM.1999.824210
[8]  
BIEGEL BA, 2000, UNPUB IEEE T ELECT D
[9]   A HYBRID CENTRAL DIFFERENCE SCHEME FOR SOLID-STATE DEVICE SIMULATION [J].
KRESKOVSKY, JP .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1987, 34 (05) :1128-1133
[10]  
Oran ES, 2001, Numerical simulation of reactive flow