Large-Area Graphene Films by Simple Solution Casting of Edge-Selectively Functionalized Graphite

被引:84
作者
Bae, Seo-Yoon [1 ,2 ]
Jeon, In-Yup [1 ,2 ]
Yang, Jieun [1 ,2 ]
Park, Noejung [1 ,2 ,3 ]
Shin, Hyeon Suk [1 ,2 ]
Park, Sungjin
Ruoff, Rodney S. [4 ,5 ]
Dai, Liming [6 ]
Baek, Jong-Beom [1 ,2 ]
机构
[1] Interdisciplinary Sch Green Energy, Ulsan 689798, South Korea
[2] UNIST, Inst Adv Mat & Devices, Ulsan 689798, South Korea
[3] Inha Univ, Dept Chem, Inchon 402751, South Korea
[4] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA
[5] Texas Mat Inst, Austin, TX 78712 USA
[6] Case Western Reserve Univ, Dept Macromol Sci & Engn, Cleveland, OH 44106 USA
基金
新加坡国家研究基金会;
关键词
edge-selective functionalization; graphene film; solution processing; annealing; sheet resistance; optical transmittance; TRANSPARENT ELECTRODES; OXIDE; EXFOLIATION; REDUCTION; SHEETS;
D O I
10.1021/nn201072m
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report edge-selective functionalization of graphite (EFG) for the production of large-area uniform graphene films by simply solution-casting EFG dispersions In dichloromethane on silicon oxide substrates, followed by annealing. The resultant graphene films show ambipolar transport properties with sheet resistances of 0.52-3.11 K Omega/sq at 63-90% optical transmittance. EFG allows solution processing methods for the scalable production of electrically conductive, optically transparent, and mechanically robust flexible graphene films for use in practice.
引用
收藏
页码:4974 / 4980
页数:7
相关论文
共 27 条
[1]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[2]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[3]   Making graphene visible [J].
Blake, P. ;
Hill, E. W. ;
Castro Neto, A. H. ;
Novoselov, K. S. ;
Jiang, D. ;
Yang, R. ;
Booth, T. J. ;
Geim, A. K. .
APPLIED PHYSICS LETTERS, 2007, 91 (06)
[4]   Modeling of graphite oxide [J].
Boukhvalov, D. W. ;
Katsnelson, M. I. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (32) :10697-10701
[5]   The structural evolution of thin multi-walled carbon nanotubes during isothermal annealing [J].
Chen, J. ;
Shan, J. Y. ;
Tsukada, T. ;
Munekane, F. ;
Kuno, A. ;
Matsuo, M. ;
Hayashi, T. ;
Kim, Y. A. ;
Endo, M. .
CARBON, 2007, 45 (02) :274-280
[6]   High-yield exfoliation of three-dimensional graphite into two-dimensional graphene-like sheets [J].
Choi, Eun-Kyoung ;
Jeon, In-Yup ;
Bae, Seo-Yoon ;
Lee, Hwa-Jung ;
Shin, Hyeon Suk ;
Dai, Liming ;
Baek, Jong-Beom .
CHEMICAL COMMUNICATIONS, 2010, 46 (34) :6320-6322
[7]   Graphene - Nanoelectronics goes flat out [J].
Freitag, Marcus .
NATURE NANOTECHNOLOGY, 2008, 3 (08) :455-457
[8]  
Gao W, 2009, NAT CHEM, V1, P403, DOI [10.1038/NCHEM.281, 10.1038/nchem.281]
[9]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[10]   Bipolar supercurrent in graphene [J].
Heersche, Hubert B. ;
Jarillo-Herrero, Pablo ;
Oostinga, Jeroen B. ;
Vandersypen, Lieven M. K. ;
Morpurgo, Alberto F. .
NATURE, 2007, 446 (7131) :56-59