Parylene to silicon nitride bonding for post-integration of high pressure microfluidics to CMOS devices

被引:23
作者
Ciftlik, Ata Tuna [1 ]
Gijs, Martin A. M. [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Lab Microsyst 2, CH-1015 Lausanne, Switzerland
关键词
TEMPERATURE; FABRICATION; CHANNELS; POLYMERS; PROBES;
D O I
10.1039/c1lc20727j
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
High pressure-rated channels allow microfluidic assays to be performed on a smaller footprint while keeping the throughput, thanks to the higher enabled flow rates, opening up perspectives for cost-effective integration of CMOS chips to microfluidic circuits. Accordingly, this study introduces an easy, low-cost and efficient method for realizing high pressure microfluidics-to-CMOS integration. First, we report a new low temperature (280 degrees C) Parylene-C wafer bonding technique, where O-2 plasma-treated Parylene-C bonds directly to Si3N4 with an average bonding strength of 23 MPa. The technique works for silicon wafers with a nitride surface and uses a single layer of Parylene-C deposited only on one wafer, and allows microfluidic structures to be easily formed by directly bonding to the nitride passivation layer of the CMOS devices. Exploiting this technology, we demonstrated a microfluidic chip burst pressure as high as 16 MPa, while metal electrode structures on the silicon wafer remained functional after bonding.
引用
收藏
页码:396 / 400
页数:5
相关论文
共 27 条
[1]   Room-temperature intermediate layer bonding for microfluidic devices [J].
Bart, Jacob ;
Tiggelaar, Roald ;
Yang, Menglong ;
Schlautmann, Stefan ;
Zuilhof, Han ;
Gardeniers, Han .
LAB ON A CHIP, 2009, 9 (24) :3481-3488
[2]   Effects of gas pressure and substrate temperature on the etching of parylene-N using a remote microwave oxygen plasma [J].
Callahan, RRA ;
Raupp, GB ;
Beaudoin, SP .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2001, 19 (03) :725-731
[3]   A low-temperature parylene-to-silicon dioxide bonding technique for high-pressure microfluidics [J].
Ciftlik, A. T. ;
Gijs, M. A. M. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2011, 21 (03)
[4]   Monolithic Silicon Chip for Immunofluorescence Detection on Single Magnetic Beads [J].
Dupont, Emile P. ;
Labonne, Estelle ;
Vandevyver, Caroline ;
Lehmann, Ulrike ;
Charbon, Edoardo ;
Gijs, Martin A. M. .
ANALYTICAL CHEMISTRY, 2010, 82 (01) :49-52
[5]   Determining the optimal PDMS-PDMS bonding technique for microfluidic devices [J].
Eddings, Mark A. ;
Johnson, Michael A. ;
Gale, Bruce K. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2008, 18 (06)
[6]   Thermal buckling of silicon capacitive pressure sensor [J].
Ettouhami, A ;
Essaid, A ;
Ouakrim, N ;
Michel, L ;
Limouri, M .
SENSORS AND ACTUATORS A-PHYSICAL, 1996, 57 (03) :167-171
[7]   High-pressure microfluidic control in lab-on-a-chip devices using mobile polymer monoliths [J].
Hasselbrink, EF ;
Shepodd, TJ ;
Rehm, JE .
ANALYTICAL CHEMISTRY, 2002, 74 (19) :4913-4918
[8]   The Bond Strength of Au/Si Eutectic Bonding Studied by IR Microscope [J].
Jing, Errong ;
Xiong, Bin ;
Wang, Yuelin .
IEEE TRANSACTIONS ON ELECTRONICS PACKAGING MANUFACTURING, 2010, 33 (01) :31-37
[9]   Characterization of low-temperature wafer bonding using thin-film Parylene [J].
Kim, H ;
Najafi, K .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2005, 14 (06) :1347-1355
[10]   Low temperature fabrication of immersion capacitive micromachined ultrasonic transducers on silicon and dielectric substrates [J].
Knight, J ;
McLean, J ;
Degertekin, FL .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2004, 51 (10) :1324-1333