Forward and reverse motion of single RecBCD molecules on DNA

被引:114
作者
Perkins, TT [1 ]
Li, HW
Dalal, RV
Gelles, J
Block, SM
机构
[1] Stanford Univ, Dept Biol Sci, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
[3] Brandeis Univ, Dept Biochem, Waltham, MA 02454 USA
基金
英国惠康基金;
关键词
D O I
10.1016/S0006-3495(04)74232-0
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
RecBCD is a processive, DNA-based motor enzyme with both helicase and nuclease activities. We used high-resolution optical trapping to study individual RecBCD molecules moving against applied forces up to 8 pN. Fine-scale motion was smooth down to a detection limit of 2 nm, implying a unitary step size below six basepairs (bp). Episodes of constant-velocity motion over hundreds to thousands of basepairs were punctuated by abrupt switches to a different speed or by spontaneous pauses of mean length 3 s. RecBCD occasionally reversed direction, sliding backward along DNA. Backsliding could be halted by reducing the force, after which forward motion sometimes resumed, often after a delay. Elasticity measurements showed that the DNA substrate was partially denatured during backsliding events, but reannealed concomitant with the resumption of forward movement. Our observations show that RecBCD-DNA complexes can exist in multiple, functionally distinct states that persist for many catalytic turnovers: such states may help tune enzyme activity for various biological functions.
引用
收藏
页码:1640 / 1648
页数:9
相关论文
共 36 条
[1]   Processive translocation and DNA unwinding by individual RecBCD enzyme molecules [J].
Bianco, PR ;
Brewer, LR ;
Corzett, M ;
Balhorn, R ;
Yeh, Y ;
Kowalczykowski, SC ;
Baskin, RJ .
NATURE, 2001, 409 (6818) :374-378
[2]   Translocation step size and mechanism of theRecBC DNA helicase [J].
Bianco, PR ;
Kowalczykowski, SC .
NATURE, 2000, 405 (6784) :368-372
[3]   Unzipping DNA with optical tweezers: high sequence sensitivity and force flips [J].
Bockelmann, U ;
Thomen, P ;
Essevaz-Roulet, B ;
Viasnoff, V ;
Heslot, F .
BIOPHYSICAL JOURNAL, 2002, 82 (03) :1537-1553
[4]   Estimating the persistence length of a worm-like chain molecule from force-extension measurements [J].
Bouchiat, C ;
Wang, MD ;
Allemand, JF ;
Strick, T ;
Block, SM ;
Croquette, V .
BIOPHYSICAL JOURNAL, 1999, 76 (01) :409-413
[5]   ENTROPIC ELASTICITY OF LAMBDA-PHAGE DNA [J].
BUSTAMANTE, C ;
MARKO, JF ;
SIGGIA, ED ;
SMITH, S .
SCIENCE, 1994, 265 (5178) :1599-1600
[6]   The importance of repairing stalled replication forks [J].
Cox, MM ;
Goodman, MF ;
Kreuzer, KN ;
Sherratt, DJ ;
Sandler, SJ ;
Marians, KJ .
NATURE, 2000, 404 (6773) :37-41
[7]   RecBCD enzyme is a bipolar DNA helicase [J].
Dillingham, MS ;
Spies, M ;
Kowalczykowski, SC .
NATURE, 2003, 423 (6942) :893-897
[8]   THE RECOMBINATION HOTSPOT-CHI IS A REGULATORY SEQUENCE THAT ACTS BY ATTENUATING THE NUCLEASE ACTIVITY OF THE ESCHERICHIA-COLI RECBCD ENZYME [J].
DIXON, DA ;
KOWALCZYKOWSKI, SC .
CELL, 1993, 73 (01) :87-96
[9]   χ-Sequence recognition and DNA translocation by single RecBCD helicase/nuclease molecules [J].
Dohoney, KM ;
Gelles, J .
NATURE, 2001, 409 (6818) :370-374
[10]   SINGLE MYOSIN MOLECULE MECHANICS - PICONEWTON FORCES AND NANOMETER STEPS [J].
FINER, JT ;
SIMMONS, RM ;
SPUDICH, JA .
NATURE, 1994, 368 (6467) :113-119