Use of cryo-negative staining in tomographic reconstruction of biological objects: application to T4 bacteriophage

被引:9
作者
Messaoudi, C
Boudier, T
Lechaire, JP
Rigaud, JL
Delacroix, H
Gaill, F
Marco, S
机构
[1] Inst Curie, Sect Rech, CNRS, UMR 168, F-75231 Paris 05, France
[2] LRC CEA 34V, F-75231 Paris 05, France
[3] Univ Paris 06, UPMC, F-75252 Paris 05, France
[4] Univ Paris 06, CNRS, UMR 7622, F-75252 Paris 05, France
[5] Univ Paris 06, CNRS, SME IFR BI 2062, F-75252 Paris 05, France
关键词
electron tomography; cryo-microscopy; cryo-negative staining; 3D reconstruction; T4; bacteriophage;
D O I
10.1016/S0248-4900(03)00086-8
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Recent advances in electron microscopy and image analysis techniques have resulted in the development of tomography, which makes possible the study of structures neither accessible to X-ray crystallography nor nuclear magnetic resonance. However, the use of tomography to study biological structures, ranging from 100 to 500 nm, requires developments in sample preparation and image analysis. Indeed, cryo-electron tomography present two major drawbacks: the low contrast of recorded images and the sample radiation damage. In the present work we have tested, on T4 bacteriophage samples, the use of a new preparation technique, cryo-negative staining (Adrian et a]., 1998), which reduces the radiation damage while preserving a high signal-to-noise ratio (De Carlo et al., 2002). Our results demonstrate that the combination of cryo-negative staining in tomography with standard cryo-microscopy and single particle analysis results in a methodological approach that could be useful in the study of biological structures ranging in the T4 bacteriophage size. (C) 2003 Editions scientifiques et medicales Elsevier SAS. All rights reserved.
引用
收藏
页码:393 / 398
页数:6
相关论文
共 36 条
[21]   PATTERN-RECOGNITION AND CLASSIFICATION OF IMAGES OF BIOLOGICAL MACROMOLECULES USING ARTIFICIAL NEURAL NETWORKS [J].
MARABINI, R ;
CARAZO, JM .
BIOPHYSICAL JOURNAL, 1994, 66 (06) :1804-1814
[22]   Xmipp: An image processing package for electron microscopy [J].
Marabini, R ;
Masegosa, IM ;
SanMartin, MC ;
Marco, S ;
Fernandez, JJ ;
delaFraga, LG ;
Vaquerizo, C ;
Carazo, JM .
JOURNAL OF STRUCTURAL BIOLOGY, 1996, 116 (01) :237-240
[23]   A variant to the ''random approximation'' of the reference-free alignment algorithm [J].
Marco, S ;
Chagoyen, M ;
delaFraga, LG ;
Carazo, JM ;
Carrascosa, JL .
ULTRAMICROSCOPY, 1996, 66 (1-2) :5-10
[24]  
MCEVEN B, 2001, J HISTOCHEM CYTOCHEM, V49, P553
[25]   Cryoelectron microscopy and cryoelectron tomography of the nuclear pre-mRNA processing machine [J].
Medalia, O ;
Typke, D ;
Hegerl, R ;
Angenitzki, M ;
Sperling, J ;
Sperling, R .
JOURNAL OF STRUCTURAL BIOLOGY, 2002, 138 (1-2) :74-84
[26]  
Mullick R, 1998, ANN M SOC COMP APPL
[27]   Structure of the αβtubulin dimer by electron crystallography [J].
Nogales, E ;
Wolf, SG ;
Downing, KH .
NATURE, 1998, 391 (6663) :199-203
[28]   High-voltage electron tomography of spindle pole bodies and early mitotic spindles in the yeast Saccharomyces cerevisiae [J].
O'Toole, ET ;
Winey, M ;
McIntosh, JR .
MOLECULAR BIOLOGY OF THE CELL, 1999, 10 (06) :2017-2031
[29]   Structure of keyhole limpet hemocyanin type 1 (KLH1) at 15 angstrom resolution by electron cryomicroscopy and angular reconstitution [J].
Orlova, EV ;
Dube, P ;
Harris, JR ;
Beckman, E ;
Zemlin, F ;
Markl, J ;
vanHeel, M .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 271 (03) :417-437
[30]   Quantitative self-organizing maps for clustering electron tomograms [J].
Pascual-Montano, A ;
Taylor, KA ;
Winkler, H ;
Pascual-Marqui, RD ;
Carazo, JM .
JOURNAL OF STRUCTURAL BIOLOGY, 2002, 138 (1-2) :114-122