Multiple-prototype classifier design

被引:87
作者
Bezdek, JC [1 ]
Reichherzer, TR
Lim, GS
Attikiouzel, Y
机构
[1] Univ W Florida, Dept Comp Sci, Pensacola, FL 32514 USA
[2] Univ Western Australia, Ctr Intelligent Informat Proc Syst, Dept Elect & Elect Engn, Perth, WA 6009, Australia
来源
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS | 1998年 / 28卷 / 01期
关键词
competitive learning; Iris data; modified Chang's method (MCA); multiple prototypes; nearest neighbor (1-nn) rule;
D O I
10.1109/5326.661091
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Five methods that generate multiple prototypes from labeled data are reviewed. Then we introduce a new sixth approach, which Is a modification of Chang's method. We compare the six methods with two standard classifier designs: the 1-nearest prototype (l-np) and 1-nearest neighbor(l-np) rules. The standard of comparison is the resubstitution error rate; the, data used are the Iris data. Our modified Chang's method produces the best consistent (zero errors) design. One of the competitive learning models produces the best minimal prototypes design (five prototypes that yield three resubstitution errors).
引用
收藏
页码:67 / 79
页数:13
相关论文
共 17 条
  • [1] Anderson E., 1935, Bulletin of the American IRIS Society, V59, P2
  • [2] [Anonymous], 1982, Pattern recognition: A statistical approach
  • [3] [Anonymous], Pattern Recognition With Fuzzy Objective Function Algorithms
  • [4] CHANG CL, 1974, IEEE T COMPUT, V23
  • [5] Dasarathy B.V., 1990, NEAREST NEIGHBOR NN
  • [6] DASARATHY BV, 1994, IEEE T SYST MAN CYBE, V24
  • [7] DUDA R, 1973, PATTERN CLASSIFICATI
  • [8] Gersho A., 1992, VECTOR QUANTIZATION
  • [9] Repairs to GLVQ: A new family of competitive learning schemes
    Karayiannis, NB
    Bezdek, JC
    Pal, NR
    Hathaway, RJ
    Pai, PI
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1996, 7 (05): : 1062 - 1071
  • [10] Kohonen T., 1989, Self-Organization and Associative Memory, V3rd