Arteries provide essential guidance cues for lymphatic endothelial cells in the zebrafish trunk

被引:166
作者
Bussmann, Jeroen [1 ,2 ,3 ]
Bos, Frank L. [1 ,2 ,3 ,4 ]
Urasaki, Akihiro [5 ]
Kawakami, Koichi [5 ,6 ]
Duckers, Henricus J. [4 ]
Schulte-Merker, Stefan [1 ,2 ,3 ]
机构
[1] Hubrecht Inst KNAW, NL-3584 CT Utrecht, Netherlands
[2] Univ Med Ctr, NL-3584 CT Utrecht, Netherlands
[3] Ctr Biomed Genet, NL-3584 CT Utrecht, Netherlands
[4] Erasmus Univ, Med Ctr Rotterdam, Mol Cardiol Lab, Thoraxctr, NL-3015 CE Rotterdam, Netherlands
[5] Natl Inst Genet, Div Mol & Dev Biol, Mishima, Shizuoka 4118540, Japan
[6] Grad Univ Adv Studies SOKENDAI, Dept Genet, Mishima, Shizuoka 4118540, Japan
来源
DEVELOPMENT | 2010年 / 137卷 / 16期
关键词
Lymphatic system; Cell migration; Endothelium; Pattern formation; Zebrafish; LYMPHANGIOGENESIS;
D O I
10.1242/dev.048207
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The endothelial cells of the vertebrate lymphatic system assemble into complex networks, but local cues that guide the migration of this distinct set of cells are currently unknown. As a model for lymphatic patterning, we have studied the simple vascular network of the zebrafish trunk consisting of three types of lymphatic vessels that develop in close connection with the blood vasculature. We have generated transgenic lines that allow us to distinguish between arterial, venous and lymphatic endothelial cells (LECs) within a single zebrafish embryo. We found that LECs migrate exclusively along arteries in a manner that suggests that arterial endothelial cells serve as the LEC migratory substrate. In the absence of intersegmental arteries, LEC migration in the trunk is blocked. Our data therefore demonstrate a crucial role for arteries in LEC guidance.
引用
收藏
页码:2653 / 2657
页数:5
相关论文
共 13 条
[1]   Lymphangiogenesis in development and human disease [J].
Alitalo, K ;
Tammela, T ;
Petrova, TV .
NATURE, 2005, 438 (7070) :946-953
[2]   Genetic dissection of neural circuits by Tol2 transposon-mediated Gal4 gene and enhancer trapping in zebrafish [J].
Asakawa, Kazuhide ;
Suster, Maximiliano L. ;
Mizusawa, Kanta ;
Nagayoshi, Saori ;
Kotani, Tomoya ;
Urasaki, Akihiro ;
Kishimoto, Yasuyuki ;
Hibi, Masahiko ;
Kawakami, Koichi .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (04) :1255-1260
[3]   Harnessing a high cargo-capacity transposon for genetic applications in vertebrates [J].
Balciunas, Darius ;
Wangensteen, Kirk J. ;
Wilber, Andrew ;
Bell, Jason ;
Geurts, Aron ;
Sivasubbu, Sridhar ;
Wang, Xin ;
Hackett, Perry B. ;
Largaespada, David A. ;
McIvor, R. Scott ;
Ekker, Stephen C. .
PLOS GENETICS, 2006, 2 (11) :1715-1724
[4]  
GEUDENS I, 2010, ARTERIOSCLER THROMB
[5]   Analysis of a zebrafish VEGF receptor mutant reveals specific disruption of angiogenesis [J].
Habeck, H ;
Odenthal, J ;
Walderich, B ;
Maischien, HM ;
Schulte-Merker, S .
CURRENT BIOLOGY, 2002, 12 (16) :1405-1412
[6]   ccbe1 is required for embryonic lymphangiogenesis and venous sprouting [J].
Hogan, Benjamin M. ;
Bos, Frank L. ;
Bussmann, Jeroen ;
Witte, Merlijn ;
Chi, Neil C. ;
Duckers, Henricus J. ;
Schulte-Merker, Stefan .
NATURE GENETICS, 2009, 41 (04) :396-398
[7]   The vascular anatomy of the developing zebrafish: An atlas of embryonic and early larval development [J].
Isogai, S ;
Horiguchi, M ;
Weinstein, BM .
DEVELOPMENTAL BIOLOGY, 2001, 230 (02) :278-301
[8]   Development of the zebrafish lymphatic system requires VEGFC signaling [J].
Kuchler, Axel M. ;
Gjini, Evisa ;
Peterson-Maduro, Josi ;
Cancilla, Belinda ;
Wolburg, Hartwig ;
Schulte-Merker, Stefan .
CURRENT BIOLOGY, 2006, 16 (12) :1244-1248
[9]  
Lawson ND, 2001, DEVELOPMENT, V128, P3675
[10]   In vivo imaging of embryonic vascular development using transgenic zebrafish [J].
Lawson, ND ;
Weinstein, BM .
DEVELOPMENTAL BIOLOGY, 2002, 248 (02) :307-318