Microplasmas for nanomaterials synthesis

被引:467
作者
Mariotti, Davide [1 ]
Sankaran, R. Mohan [2 ]
机构
[1] Univ Ulster, NAMRI, Newtownabbey BT37 0QB, North Ireland
[2] Case Western Reserve Univ, Dept Chem Engn, Cleveland, OH 44106 USA
关键词
ATMOSPHERIC-PRESSURE PLASMA; NANOSCALE CORONA DISCHARGE; PULSED-LASER-ABLATION; CARBON NANOTUBES; MICRODISCHARGE DEVICES; SILICON NANOCRYSTALS; RF MICROPLASMA; METAL NANOPARTICLES; GOLD NANOPARTICLES; MICROSCALE PLASMA;
D O I
10.1088/0022-3727/43/32/323001
中图分类号
O59 [应用物理学];
学科分类号
摘要
Microplasmas have attracted a tremendous amount of interest from the plasma community because of their small physical size, stable operation at atmospheric pressure, non-thermal characteristics, high electron densities and non-Maxwellian electron energy distributions. These properties make microplasmas suitable for a wide range of materials applications, including the synthesis of nanomaterials. Research has shown that vapour-phase precursors can be injected into a microplasma to homogeneously nucleate nanoparticles in the gas phase. Alternatively, microplasmas have been used to evaporate solid electrodes and form metal or metal-oxide nanostructures of various composition and morphology. Microplasmas have also been coupled with liquids to directly reduce aqueous metal salts and produce colloidal dispersions of nanoparticles. This topical review discusses the unique features of microplasmas that make them advantageous for nanomaterials synthesis, gives an overview of the diverse approaches previously reported in the literature and looks ahead to the potential for scale-up of current microplasma-based processes.
引用
收藏
页数:21
相关论文
共 183 条
[1]   Self-organization of SiO2 nanodots deposited by chemical vapor deposition using an atmospheric pressure remote microplasma [J].
Arnoult, G. ;
Belmonte, T. ;
Henrion, G. .
APPLIED PHYSICS LETTERS, 2010, 96 (10)
[2]   Ion irradiation effects on ionic liquids interfaced with rf discharge plasmas [J].
Baba, K. ;
Kaneko, T. ;
Hatakeyama, R. .
APPLIED PHYSICS LETTERS, 2007, 90 (20)
[3]   Efficient Synthesis of Gold Nanoparticles Using Ion Irradiation in Gas-Liquid Interfacial Plasmas [J].
Baba, Kazuhiko ;
Kaneko, Toshiro ;
Hatakeyama, Rikizo .
APPLIED PHYSICS EXPRESS, 2009, 2 (03)
[4]   Microplasmas and applications [J].
Becker, KH ;
Schoenbach, KH ;
Eden, JG .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2006, 39 (03) :R55-R70
[5]   Gas temperature and electron density profiles in an argon dc microdischarge measured by optical emission spectroscopy [J].
Belostotskiy, Sergey G. ;
Ouk, Tola ;
Donnelly, Vincent M. ;
Economou, Demetre J. ;
Sadeghi, Nader .
JOURNAL OF APPLIED PHYSICS, 2010, 107 (05)
[6]   Measurement of electron temperature and density in an argon microdischarge by laser Thomson scattering [J].
Belostotskiy, Sergey G. ;
Khandelwal, Rahul ;
Wang, Qiang ;
Donnelly, Vincent M. ;
Economou, Demetre J. ;
Sadeghi, Nader .
APPLIED PHYSICS LETTERS, 2008, 92 (22)
[7]   Influence of gas heating on high pressure dc microdischarge I-V characteristics [J].
Belostotskiy, Sergey G. ;
Donnelly, Vincent M. ;
Economou, Demetre J. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2008, 17 (04)
[8]   Atmospheric pressure microplasma jet as a depositing tool [J].
Benedikt, J. ;
Focke, K. ;
Yanguas-Gil, A. ;
von Keudell, A. .
APPLIED PHYSICS LETTERS, 2006, 89 (25)
[9]   Thin film deposition by means of atmospheric pressure microplasma jet [J].
Benedikt, J. ;
Raballand, V. ;
Yanguas-Gil, A. ;
Focke, K. ;
von Keudell, A. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2007, 49 (12B) :B419-B427
[10]   Plasma-chemical reactions: low pressure acetylene plasmas [J].
Benedikt, J. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2010, 43 (04)