Quantum Poincare recurrences

被引:61
作者
Casati, G
Maspero, G
Shepelyansky, DL
机构
[1] Univ Milan, Sede Como, Como, Italy
[2] Univ Milan, Ist Nazl Fis Mat, I-20133 Milan, Italy
[3] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy
[4] Univ Toulouse 3, Phys Quant Lab, CNRS, UMR 5626, F-31062 Toulouse, France
关键词
D O I
10.1103/PhysRevLett.82.524
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that quantum effects modify the decay rate of Poincare recurrences P(t) in classical chaotic systems with hierarchical structure of phase space. The exponent p of the algebraic decay P(t) proportional to 1/t(p) is shown to have the universal value p = I due to tunneling and localization effects. Experimental evidence of such decay should be observable in mesoscopic systems and cold atoms. [S0031-9007(98)08273-8].
引用
收藏
页码:524 / 527
页数:4
相关论文
共 20 条
[1]   Quantum delta-kicked rotor: Experimental observation of decoherence [J].
Ammann, H ;
Gray, R ;
Shvarchuck, I ;
Christensen, N .
PHYSICAL REVIEW LETTERS, 1998, 80 (19) :4111-4115
[2]   STATISTICS OF QUANTUM LIFETIMES IN A CLASSICALLY CHAOTIC SYSTEM [J].
BORGONOVI, F ;
GUARNERI, I ;
SHEPELYANSKY, DL .
PHYSICAL REVIEW A, 1991, 43 (08) :4517-4520
[3]   Relaxation process in a regime of quantum chaos [J].
Casati, G ;
Maspero, G ;
Shepelyansky, DL .
PHYSICAL REVIEW E, 1997, 56 (06) :R6233-R6236
[4]  
CASATI G, IN PRESS
[5]  
Chirikov B. V., 1996, Journal of Experimental and Theoretical Physics, V83, P646
[6]   Asymptotic statistics of Poincare recurrences in Hamiltonian systems with divided phase space [J].
Chirikov, BV ;
Shepelyansky, DL .
PHYSICAL REVIEW LETTERS, 1999, 82 (03) :528-531
[7]   CORRELATION-PROPERTIES OF DYNAMICAL CHAOS IN HAMILTONIAN-SYSTEMS [J].
CHIRIKOV, BV ;
SHEPELYANSKY, DL .
PHYSICA D, 1984, 13 (03) :395-400
[8]  
CHIRIKOV BV, 1988, RENORMALIZATION GROU, P221
[9]   GENERIC 1/F NOISE IN CHAOTIC HAMILTONIAN-DYNAMICS [J].
GEISEL, T ;
ZACHERL, A ;
RADONS, G .
PHYSICAL REVIEW LETTERS, 1987, 59 (22) :2503-2506
[10]   LONG-TIME CORRELATIONS IN THE STOCHASTIC REGIME [J].
KARNEY, CFF .
PHYSICA D, 1983, 8 (03) :360-380