Predicting failure rate of PCR in large genomes

被引:33
作者
Andreson, Reidar [1 ,2 ]
Mols, Tonu [1 ]
Remm, Maido [1 ,2 ]
机构
[1] Univ Tartu, Inst Mol & Cell Biol, Dept Bioinformat, EE-50090 Tartu, Estonia
[2] Estonian Bioctr, Tartu, Estonia
关键词
D O I
10.1093/nar/gkn290
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have developed statistical models for estimating the failure rate of polymerase chain reaction (PCR) primers using 236 primer sequence-related factors. The model involved 1314 primer pairs and is based on more than 80 000 PCR experiments. We found that the most important factor in determining PCR failure is the number of predicted primer-binding sites in the genomic DNA. We also compared different ways of defining primer-binding sites (fixed length word versus thermodynamic model; exact match versus matches including 1-2 mismatches). We found that the most efficient prediction of PCR failure rates can be achieved using a combination of four factors (number of primer-binding sites counted in different ways plus GC% of the primer) combined into single statistical model GM1. According to our estimations from experimental data, the GM1 model can reduce the average failure rate of PCR primers nearly 3-fold (from 17% to 6%). The GM1 model can easily be implemented in software to premask genome sequences for potentially failing PCR primers, thus improving large-scale PCR-primer design.
引用
收藏
页数:10
相关论文
共 24 条
[1]  
ALTSCHUL SF, 1997, NUCLEIC ACIDS RES, V25, P3402
[2]   GENOMEMASKER package for designing unique genomic PCR primers [J].
Andreson, R ;
Reppo, E ;
Kaplinski, L ;
Remm, M .
BMC BIOINFORMATICS, 2006, 7 (1)
[3]  
BEASLEY EM, 1999, PCR APPL PROTOCOLS F, P55
[4]   Regionalized GC content of template DNA as a predictor of PCR success [J].
Benita, Y ;
Oosting, RS ;
Lok, MC ;
Wise, MJ ;
Humphery-Smith, I .
NUCLEIC ACIDS RESEARCH, 2003, 31 (16)
[5]   Oligonucleotide properties determination and primer designing: a critical examination of predictions [J].
Chavali, S ;
Mahajan, A ;
Tabassum, R ;
Maiti, S ;
Bharadwaj, D .
BIOINFORMATICS, 2005, 21 (20) :3918-3925
[6]   A SIMPLE PROCEDURE FOR OPTIMIZING THE POLYMERASE CHAIN-REACTION (PCR) USING MODIFIED TAGUCHI METHODS [J].
COBB, BD ;
CLARKSON, JM .
NUCLEIC ACIDS RESEARCH, 1994, 22 (18) :3801-3805
[7]   A first-generation linkage disequilibrium map of human chromosome 22 [J].
Dawson, E ;
Abecasis, GR ;
Bumpstead, S ;
Chen, Y ;
Hunt, S ;
Beare, DM ;
Pabial, J ;
Dibling, T ;
Tinsley, E ;
Kirby, S ;
Carter, D ;
Papaspyridonos, M ;
Livingstone, S ;
Ganske, R ;
Lohmmussaar, E ;
Zernant, J ;
Tonisson, N ;
Remm, M ;
Mägi, R ;
Puurand, T ;
Vilo, J ;
Kurg, A ;
Rice, K ;
Deloukas, P ;
Mott, R ;
Metspalu, A ;
Bentley, DR ;
Cardon, LR ;
Dunham, I .
NATURE, 2002, 418 (6897) :544-548
[8]   Primer design for large scale sequencing [J].
Haas, S ;
Vingron, M ;
Poustka, A ;
Wiemann, S .
NUCLEIC ACIDS RESEARCH, 1998, 26 (12) :3006-3012
[9]  
Innis MA, 1990, PCR PROTOCOLS GUIDE, P3
[10]   Repbase Update - a database and an electronic journal of repetitive elements [J].
Jurka, J .
TRENDS IN GENETICS, 2000, 16 (09) :418-420