Iterative learning control for discrete-time systems with exponential rate of convergence

被引:292
作者
Amann, N [1 ]
Owens, DH [1 ]
Rogers, E [1 ]
机构
[1] UNIV SOUTHAMPTON,DEPT ELECTR & COMP SCI,SOUTHAMPTON SO17 1BJ,HANTS,ENGLAND
来源
IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS | 1996年 / 143卷 / 02期
关键词
iterative learning control; optimal control; descent methods; gradient-type algorithms; reference-input tracking; two-dimensional systems;
D O I
10.1049/ip-cta:19960244
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An algorithm for iterative learning control is proposed based on an optimisation principle used by other authors to derive gradient-type algorithms. The new algorithm is a descent algorithm and has potential benefits which include realisation in terms of Riccati feedback and feedforward components. This realisation also has the advantage of implicitly ensuring automatic step-size selection and hence guaranteeing convergence without the need for empirical choice of parameters. The algorithm achieves a geometric rate of convergence for invertible plants. One important feature of the proposed algorithm is the dependence of the speed of convergence on weight parameters appearing in the norms of the signals chosen for the optimisation problem.
引用
收藏
页码:217 / 224
页数:8
相关论文
共 24 条
[1]  
AMANN N, 1994, P 2 INT C INT SYST E, P107
[2]  
AMANN N, 1996, IN PRESS INT J CONTR
[3]  
Anderson B.D.O., 1989, Optimal Control: Linear Quadratic Methods
[4]  
Astrom K.J., 1990, COMPUTER CONTROLLED
[5]  
Athans Michael., 1966, OPTIMAL CONTROL
[6]  
Bell D.J., 1975, SINGULAR OPTIMAL CON
[7]  
BUCHHEIT K, 1994, P IEE INT C CONTR CO, P652
[8]  
FURUTA K, 1987, JAN P IEEE INT S INT, P371
[9]   2-DIMENSIONAL MODEL AND ALGORITHM ANALYSIS FOR A CLASS OF ITERATIVE LEARNING CONTROL-SYSTEMS [J].
GENG, Z ;
CARROLL, R ;
XIE, JH .
INTERNATIONAL JOURNAL OF CONTROL, 1990, 52 (04) :833-862
[10]   ITERATIVE LEARNING CONTROL METHOD FOR DISCRETE-TIME DYNAMIC-SYSTEMS [J].
HWANG, DH ;
BIEN, Z ;
OH, SR .
IEE PROCEEDINGS-D CONTROL THEORY AND APPLICATIONS, 1991, 138 (02) :139-144