Atomate: A high-level interface to generate, execute, and analyze computational materials science workflows

被引:249
作者
Mathew, Kiran [1 ,2 ]
Montoya, Joseph H. [1 ]
Faghaninia, Alireza [1 ]
Dwarakanath, Shyam [1 ]
Aykol, Muratahan [1 ]
Tang, Hanmei [3 ]
Chu, Iek-heng [3 ]
Smidt, Tess [5 ,6 ,7 ]
Bocklund, Brandon [4 ]
Horton, Matthew [1 ]
Dagdelen, John [1 ]
Wood, Brandon [2 ]
Liu, Zi-Kui [4 ]
Neaton, Jeffrey [5 ,6 ,7 ]
Ong, Shyue Ping [3 ]
Persson, Kristin [1 ,2 ]
Jain, Anubhav [1 ]
机构
[1] Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Mat Sci, Berkeley, CA 94720 USA
[3] Univ Calif San Diego, Dept Nanoengn, La Jolla, CA 92093 USA
[4] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16801 USA
[5] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[6] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA
[7] Kavli Energy NanoSci Inst Berkeley, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
TOTAL-ENERGY CALCULATIONS; ULTRASOFT PSEUDOPOTENTIALS; THERMODYNAMICS; INFRASTRUCTURE; IDENTIFICATION; NI;
D O I
10.1016/j.commatsci.2017.07.030
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We introduce atomate, an open-source Python framework for computational materials science simulation, analysis, and design with an emphasis on automation and extensibility. Built on top of open source Python packages already in use by the materials community such as pymatgen, FireWorks, and custodian, atomate provides well-tested workflow templates to compute various materials properties such as electronic bandstructure, elastic properties, and piezoelectric, dielectric, and ferroelectric properties. Atomate also enables the computational characterization of materials by providing workflows that calculate X-ray absorption (XAS), Electron energy loss (EELS) and Raman spectra. One of the major features of atomate is that it provides both fully functional workflows as well as reusable components that enable one to compose complex materials science workflows that use a diverse set of computational tools. Additionally, atomate creates output databases that organize the results from individual calculations and contains a builder framework that creates summary reports for each computed material based on multiple simulations. (C) 2017 Elsevier B. V. All rights reserved.
引用
收藏
页码:140 / 152
页数:13
相关论文
共 49 条
[21]   Electrodes with high power and high capacity for rechargeable lithium batteries [J].
Kang, KS ;
Meng, YS ;
Bréger, J ;
Grey, CP ;
Ceder, G .
SCIENCE, 2006, 311 (5763) :977-980
[22]   First-Principles Molecular Dynamics Simulations of Silicate Melts: Structural and Dynamical Properties [J].
Karki, Bijaya B. .
THEORETICAL AND COMPUTATIONAL METHODS IN MINERAL PHYSICS: GEOPHYSICAL APPLICATIONS, 2010, 71 :355-389
[23]   Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J].
Kresse, G ;
Furthmuller, J .
PHYSICAL REVIEW B, 1996, 54 (16) :11169-11186
[24]   NORM-CONSERVING AND ULTRASOFT PSEUDOPOTENTIALS FOR FIRST-ROW AND TRANSITION-ELEMENTS [J].
KRESSE, G ;
HAFNER, J .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1994, 6 (40) :8245-8257
[25]   The Computational Materials Repository [J].
Landis, David D. ;
Hummelshoj, Jens S. ;
Nestorov, Svetlozar ;
Greeley, Jeff ;
Dulak, Marcin ;
Bligaard, Thomas ;
Norskov, Jens K. ;
Jacobsen, Karsten W. .
COMPUTING IN SCIENCE & ENGINEERING, 2012, 14 (06) :51-57
[26]   Automated search for new thermoelectric materials: The case of LiZnSb [J].
Madsen, Georg K. H. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (37) :12140-12146
[27]   BoltzTraP. A code for calculating band-structure dependent quantities [J].
Madsen, Georg K. H. ;
Singh, David J. .
COMPUTER PHYSICS COMMUNICATIONS, 2006, 175 (01) :67-71
[28]   The MAterials Simulation Toolkit (MAST) for atomistic modeling of defects and diffusion [J].
Mayeshiba, Tam ;
Wu, Henry ;
Angsten, Thomas ;
Kaczmarowski, Amy ;
Song, Zhewen ;
Jenness, Glen ;
Xie, Wei ;
Morgan, Dane .
COMPUTATIONAL MATERIALS SCIENCE, 2017, 126 :90-102
[29]  
Mills G., CLASSICAL QUANTUM DY
[30]   A high-throughput framework for determining adsorption energies on solid surfaces [J].
Montoya, Joseph H. ;
Persson, Kristin A. .
NPJ COMPUTATIONAL MATERIALS, 2017, 3