On a low-dimensional model for ferromagnetism

被引:20
作者
Iyer, RV [1 ]
Krishnaprasad, PS
机构
[1] Texas Tech Univ, Dept Math & Stat, Lubbock, TX 79409 USA
[2] Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA
[3] Univ Maryland, Syst Res Inst, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
hysteresis; ferromagnetism; low dimensional model; periodic orbit;
D O I
10.1016/j.na.2005.01.109
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a low-dimensional, energy-based model for ferromagnetic hysteresis. It is based on the postulates of Jiles and Atherton for modeling hysteresis losses. As a state space model, the system is a set of two state equations, with the time-derivative of the average applied magnetic field H as the input, and the average magnetic field H and the average magnetization M as state variables. We show analytically that for a class of time-periodic inputs and initial condition at the origin, the solution trajectory converges to a periodic orbit. This models an observed experimental phenomenon. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1447 / 1482
页数:36
相关论文
共 26 条
[1]  
Aharoni A., 2000, Introduction to the Theory of Ferromagnetism
[2]   Comparison of Preisach and Jiles-Atherton models to take into account hysteresis phenomenon for finite element analysis [J].
Benabou, A ;
Clénet, S ;
Piriou, F .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2003, 261 (1-2) :139-160
[3]   A simple vector generalization of the Jiles-Atherton model of hysteresis [J].
Bergqvist, AJ .
IEEE TRANSACTIONS ON MAGNETICS, 1996, 32 (05) :4213-4215
[4]  
BOZORTH RM, 1964, FERROMAGNETISM, V120
[5]  
Brokate M., 1996, Hysteresis and phase transitions, DOI 10.1007/978-1-4612-4048-8
[6]   A JILES-ATHERTON AND FIXED-POINT COMBINED TECHNIQUE FOR TIME-PERIODIC MAGNETIC-FIELD PROBLEMS WITH HYSTERESIS [J].
CHIAMPI, M ;
CHIARABAGLIO, D ;
REPETTO, M .
IEEE TRANSACTIONS ON MAGNETICS, 1995, 31 (06) :4306-4311
[7]  
CHIKAZUMI S, 1999, PHYS MAGNETISM
[8]   MODELING THE DYNAMICS OF NONLINEAR INDUCTOR CIRCUITS [J].
DEANE, JHB .
IEEE TRANSACTIONS ON MAGNETICS, 1994, 30 (05) :2795-2801
[9]  
DELLA TE, 1999, MAGNETIC HYSTERESIS
[10]  
Filippov A.F., 1988, MATH ITS APPL SOVIET, V18