共 51 条
Specific binding and magnetic concentration of CD8+T-lymphocytes on electrowetting-on-dielectric platform
被引:28
作者:
Shah, Gaurav J.
[1
]
Veale, Jeffrey L.
[2
]
Korin, Yael
[3
]
Reed, Elaine F.
[3
]
Gritsch, H. Albin
[2
]
Kim, Chang-Jin CJ
[1
]
机构:
[1] Univ Calif Los Angeles, Henry Samueli Sch Engn & Appl Sci, Dept Mech & Aerosp Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, David Geffen Sch Med, Dept Urol, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, David Geffen Sch Med, Immunogenet Ctr, Los Angeles, CA 90095 USA
来源:
BIOMICROFLUIDICS
|
2010年
/
4卷
/
04期
关键词:
DIGITAL MICROFLUIDICS;
A-CHIP;
LIQUID DROPLETS;
QUANTUM DOTS;
SEPARATION;
BLOOD;
CELLS;
DIELECTROPHORESIS;
PARTICLES;
ACTUATION;
D O I:
10.1063/1.3509457
中图分类号:
Q5 [生物化学];
学科分类号:
071010 ;
081704 ;
摘要:
In the quest to create a low-power portable lab-on-a-chip system, we demonstrate the specific binding and concentration of human CD8+ T-lymphocytes on an electrowetting-on-dielectric (EWOD)-based digital microfluidic platform using antibody-conjugated magnetic beads (MB-Abs). By using a small quantity of nonionic surfactant, we enable the human cell-based assays with selective magnetic binding on the EWOD device in an air environment. High binding efficiency (similar to 92%) of specific cells on MB-Abs is achieved due to the intimate contact between the cells and the magnetic beads (MBs) produced by the circulating flow within the small droplet. MBs have been used and cells manipulated in the droplets actuated by EWOD before; reported here is a cell assay of a clinical protocol on the EWOD device in air environment. The present technique can be further extended to capture other types of cells by suitable surface modification on the MBs. (C) 2010 American Institute of Physics. [doi:10.1063/1.3509457]
引用
收藏
页数:12
相关论文