Diffusion tensor imaging of the brain

被引:2008
作者
Alexander, Andrew L.
Lee, Jee Eun
Lazar, Mariana
Field, Aaron S.
机构
[1] Univ Wisconsin, Waisman Ctr, Dept Phys Med, Madison, WI 53706 USA
[2] Univ Wisconsin, Waisman Ctr, Dept Psychiat, Madison, WI 53706 USA
[3] Univ Wisconsin, Waisman Ctr, Dept Radiol, Madison, WI 53706 USA
[4] Univ Wisconsin, Waisman Ctr, Dept Biomed Engn, Madison, WI 53706 USA
[5] Univ Wisconsin, Waisman Ctr, Waisman Lab Brain Imaging & Behav, Madison, WI 53706 USA
[6] NYU, Sch Med, Ctr Biomed Imaging, Dept Radiol, New York, NY 10016 USA
关键词
diffusion tensor imaging; white matter; diffusivity; MRI; brain; fractional anisotropy;
D O I
10.1016/j.nurt.2007.05.011
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Diffusion tensor imaging (DTI) is a promising method for characterizing microstructural changes or differences with neuropathology and treatment. The diffusion tensor may be used to characterize the magnitude, the degree of anisotropy, and the orientation of directional diffusion. This review addresses the biological mechanisms, acquisition, and analysis of DTI measurements. The relationships between DTI measures and white matter pathologic features (e.g., ischemia, myelination, axonal damage, inflammation, and edema) are summarized. Applications of DTI to tissue characterization in neurotherapeutic applications are reviewed. The interpretations of common DTI measures (mean diffusivity, MD; fractional anisotropy, FA; radial diffusivity, D-r; and axial diffusivity, D-a) are discussed. In particular, FA is highly sensitive to microstructural changes, but not very specific to the type of changes (e.g., radial or axial). To maximize the specificity and better characterize the tissue microstructure, future studies should use multiple diffusion tensor measures (e.g., MID and FA, or D-a and D-r).
引用
收藏
页码:316 / 329
页数:14
相关论文
共 131 条
  • [1] Alexander AL, 2000, MAGNET RESON MED, V44, P283, DOI 10.1002/1522-2594(200008)44:2<283::AID-MRM16>3.0.CO
  • [2] 2-V
  • [3] Comparison of diffusion tensor imaging measurements at 3.0 T versus 1.5 T with and without parallel Imaging
    Alexander, AL
    Lee, JE
    Wu, YC
    Field, AS
    [J]. NEUROIMAGING CLINICS OF NORTH AMERICA, 2006, 16 (02) : 299 - +
  • [4] Elimination of eddy current artifacts in diffusion-weighted echo-planar images: The use of bipolar gradients
    Alexander, AL
    Tsuruda, JS
    Parker, DL
    [J]. MAGNETIC RESONANCE IN MEDICINE, 1997, 38 (06) : 1016 - 1021
  • [5] Analysis of partial volume effects in diffusion-tensor MRI
    Alexander, AL
    Hasan, KM
    Lazar, M
    Tsuruda, JS
    Parker, DL
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2001, 45 (05) : 770 - 780
  • [6] Diffusion tensor imaging of the corpus callosum in Autism
    Alexander, Andrew L.
    Lee, Jee Eun
    Lazar, Mariana
    Boudos, Rebecca
    DuBray, Molly B.
    Oakes, Terrence R.
    Miller, Judith N.
    Lu, Jeffrey
    Jeong, Eun-Kee
    McMahon, William M.
    Bigler, Erin D.
    Lainhart, Janet E.
    [J]. NEUROIMAGE, 2007, 34 (01) : 61 - 73
  • [7] Detection and modeling of non-Gaussian apparent diffusion coefficient profiles in human brain data
    Alexander, DC
    Barker, GJ
    Arridge, SR
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2002, 48 (02) : 331 - 340
  • [8] Frontal white matter microstructure and treatment response of late-life depression: A preliminary study
    Alexopoulos, GS
    Kiosses, DN
    Choi, SJ
    Murphy, CF
    Lim, KO
    [J]. AMERICAN JOURNAL OF PSYCHIATRY, 2002, 159 (11) : 1929 - 1932
  • [9] Measurement of fiber orientation distributions using high angular resolution diffusion imaging
    Anderson, AW
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2005, 54 (05) : 1194 - 1206
  • [10] A model-based method for retrospective correction of geometric distortions in diffusion-weighted EPI
    Andersson, JLR
    Skare, S
    [J]. NEUROIMAGE, 2002, 16 (01) : 177 - 199