Diffusion tensor imaging of the brain

被引:2008
作者
Alexander, Andrew L.
Lee, Jee Eun
Lazar, Mariana
Field, Aaron S.
机构
[1] Univ Wisconsin, Waisman Ctr, Dept Phys Med, Madison, WI 53706 USA
[2] Univ Wisconsin, Waisman Ctr, Dept Psychiat, Madison, WI 53706 USA
[3] Univ Wisconsin, Waisman Ctr, Dept Radiol, Madison, WI 53706 USA
[4] Univ Wisconsin, Waisman Ctr, Dept Biomed Engn, Madison, WI 53706 USA
[5] Univ Wisconsin, Waisman Ctr, Waisman Lab Brain Imaging & Behav, Madison, WI 53706 USA
[6] NYU, Sch Med, Ctr Biomed Imaging, Dept Radiol, New York, NY 10016 USA
关键词
diffusion tensor imaging; white matter; diffusivity; MRI; brain; fractional anisotropy;
D O I
10.1016/j.nurt.2007.05.011
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Diffusion tensor imaging (DTI) is a promising method for characterizing microstructural changes or differences with neuropathology and treatment. The diffusion tensor may be used to characterize the magnitude, the degree of anisotropy, and the orientation of directional diffusion. This review addresses the biological mechanisms, acquisition, and analysis of DTI measurements. The relationships between DTI measures and white matter pathologic features (e.g., ischemia, myelination, axonal damage, inflammation, and edema) are summarized. Applications of DTI to tissue characterization in neurotherapeutic applications are reviewed. The interpretations of common DTI measures (mean diffusivity, MD; fractional anisotropy, FA; radial diffusivity, D-r; and axial diffusivity, D-a) are discussed. In particular, FA is highly sensitive to microstructural changes, but not very specific to the type of changes (e.g., radial or axial). To maximize the specificity and better characterize the tissue microstructure, future studies should use multiple diffusion tensor measures (e.g., MID and FA, or D-a and D-r).
引用
收藏
页码:316 / 329
页数:14
相关论文
共 131 条
  • [51] MRI detects white matter reorganization after neural progenitor cell treatment of stroke
    Jiang, Quan
    Zhang, Zheng Gang
    Ding, Guang Liang
    Silver, Brian
    Zhang, Li
    Meng, He
    Lu, Mei
    Pourabdillah-Nejed-D, Siamak
    Wang, Lei
    Savant-Bhonsale, Smita
    Li, Lian
    Bagher-Ebadian, Hassan
    Hu, Jiani
    Arbab, Ali S.
    Vanguri, Padmavathy
    Ewing, James R.
    Ledbetter, Karyn Alayne
    Chopp, Michael
    [J]. NEUROIMAGE, 2006, 32 (03) : 1080 - 1089
  • [52] The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: A Monte Carlo study
    Jones, DK
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2004, 51 (04) : 807 - 815
  • [53] Isotropic resolution diffusion tensor imaging with whole brain acquisition in a clinically acceptable time
    Jones, DK
    Williams, SCR
    Gasston, D
    Horsfield, MA
    Simmons, A
    Howard, R
    [J]. HUMAN BRAIN MAPPING, 2002, 15 (04) : 216 - 230
  • [54] Jones DK, 1999, MAGNET RESON MED, V42, P515, DOI 10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.0.CO
  • [55] 2-Q
  • [56] Boosting the sampling efficiency of q-ball imaging using multiple wavevector fusion
    Khachaturian, Mark H.
    Wisco, Jonathan J.
    Tuch, David S.
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2007, 57 (02) : 289 - 296
  • [57] White matter anisotropy in post-treatment childhood cancer survivors: Preliminary evidence of association with neurocognitive function
    Khong, PL
    Leung, LHT
    Fung, ASM
    Fong, DYT
    Qiu, DQ
    Kwong, DLW
    Ooi, GC
    McAlanon, G
    Cao, GA
    Chan, GCF
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2006, 24 (06) : 884 - 890
  • [58] Khong PL, 2003, AM J NEURORADIOL, V24, P734
  • [59] A unifying theoretical and algorithmic framework for least squares methods of estimation in diffusion tensor imaging
    Koay, Cheng Guan
    Chang, Lin-Ching
    Carew, John D.
    Pierpaoli, Carlo
    Basser, Peter J.
    [J]. JOURNAL OF MAGNETIC RESONANCE, 2006, 182 (01) : 115 - 125
  • [60] Laundre BJ, 2005, AM J NEURORADIOL, V26, P791