Striking complexity of lipopolysaccharide defects in a collection of Sinorhizobium meliloti mutants

被引:65
作者
Campbell, GRO
Sharypova, LA
Scheidle, H
Jones, KM
Niehaus, K
Becker, A
Walker, GC
机构
[1] MIT, Dept Biol, Cambridge, MA 02139 USA
[2] Univ Bielefeld, Fak Biol, Lehrstuhl Genet, D-33501 Bielefeld, Germany
关键词
D O I
10.1128/JB.185.13.3853-3862.2003
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Although the role that lipopolysaccharide (LPS) plays in the symbiosis between Sinorhizobium meliloti and alfalfa has been studied for over a decade, its function in this process remains controversial and poorly understood. This is largely due to a lack of mutants affected by its synthesis. In one of the definitive studies concerning this issue, Clover et al. (R. H. Clover, J. Kieber, and E. R. Signer, J. Bacteriol. 171:3961-3967, 1989) identified a series of mutants with putative LPS defects, judged them to be symbiotically proficient on Medicago sativa, and concluded that LPS might not have a symbiotic function in S. meliloti. The mutations in these strains were never characterized at the molecular level nor was the LPS from most of them analyzed. We have transduced these mutations from the Rm2011 background from which they were originally isolated into the sequenced strain Rm1021 and have characterized the resulting strains in greater detail. We found the LPS from these mutants to display a striking complexity of phenotypes on polyacrylamide electrophoresis gels, including additional rough LPS bands and alterations in the molecular weight distribution of the smooth LPS. We found that some of the mutants contain insertions in genes that are predicted to be involved in the synthesis of carbohydrate components of LPS, including ddhB, IpsB, lpsC, and lpsE. The majority, however, code for proteins predicted to be involved in a wide variety of functions not previously recognized to play a role in LPS synthesis, including a possible transcription elongation factor (GreA), a possible queuine synthesis protein, and a possible chemotaxis protein. Furthermore, using more extensive assays, we have found that most of these strains have symbiotic deficiencies. These results support more recent findings that alterations in LPS structure can affect the ability of S. meliloti to form an effective symbiosis.
引用
收藏
页码:3853 / 3862
页数:10
相关论文
共 55 条
[51]   The effect of cyclization of magainin 2 and melittin analogues on structure, function, and model membrane interactions: Implication to their mode of action [J].
Unger, T ;
Oren, Z ;
Shai, Y .
BIOCHEMISTRY, 2001, 40 (21) :6388-6397
[52]   AGENTS THAT INCREASE THE PERMEABILITY OF THE OUTER-MEMBRANE [J].
VAARA, M .
MICROBIOLOGICAL REVIEWS, 1992, 56 (03) :395-411
[53]   Identification of a plasmid-borne locus in Rhizobium etli KIM5s involved in lipopolysaccharide O-chain biosynthesis and nodulation of Phaseolus vulgaris [J].
Vinuesa, P ;
Reuhs, BL ;
Breton, C ;
Werner, D .
JOURNAL OF BACTERIOLOGY, 1999, 181 (18) :5606-5614
[54]   Structure, assembly and regulation of expression of capsules in Escherichia coli [J].
Whitfield, C ;
Roberts, IS .
MOLECULAR MICROBIOLOGY, 1999, 31 (05) :1307-1319
[55]   Salmonella enterica serovar Typhimurium waaP mutants show increased susceptibility to polymyxin and loss of virulence in vivo [J].
Yethon, JA ;
Gunn, JS ;
Ernst, RK ;
Miller, SI ;
Laroche, L ;
Malo, D ;
Whitfield, C .
INFECTION AND IMMUNITY, 2000, 68 (08) :4485-4491