Nonlinear gyrokinetic theory of toroidal momentum pinch

被引:161
作者
Hahm, T. S.
Diamond, P. H.
Gurcan, O. D.
Rewoldt, G.
机构
[1] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA
[2] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
关键词
D O I
10.1063/1.2743642
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The turbulent convective flux of the toroidal angular momentum density is derived using the nonlinear toroidal gyrokinetic equation which conserves phase space density and energy [T. S. Hahm, Phys. Fluids, 31, 2670 (1988)]. A novel pinch mechanism is identified which originates from the symmetry breaking due to the magnetic field curvature. A net parallel momentum transfer from the waves to the ion guiding centers is possible when the fluctuation intensity varies on the flux surface, resulting in imperfect cancellation of the curvature drift contribution to the parallel acceleration. This mechanism is inherently a toroidal effect, and complements the k(parallel to) symmetry breaking mechanism due to the mean ExB shear [O. Gurcan , Phys. Plasmas 14, 042306 (2007)] which exists in a simpler geometry. In the absence of ion thermal effects, this pinch velocity of the angular momentum density can also be understood as a manifestation of a tendency to homogenize the profile of "magnetically weighted angular momentum density," nm(i)R(2)omega(parallel to)/B-2. This part of the pinch flux is mode-independent (whether it is trapped electron mode or ion temperature gradient mode driven), and radially inward for fluctuations peaked at the low-B-field side, with a pinch velocity typically, V-Ang(TEP)similar to-2 chi(phi)/R-0. Ion thermal effects introduce an additional radial pinch flux from the coupling with the curvature and grad-B drifts. This curvature driven thermal pinch can be inward or outward, depending on the mode-propagation direction. Explicit formulas in general toroidal geometry are presented. (c) 2007 American Institute of Physics.
引用
收藏
页数:22
相关论文
共 71 条
[1]   Toroidal gyrofluid equations for simulations of tokamak turbulence [J].
Beer, MA ;
Hammett, GW .
PHYSICS OF PLASMAS, 1996, 3 (11) :4046-4064
[2]   INFLUENCE OF SHEARED POLOIDAL ROTATION ON EDGE TURBULENCE [J].
BIGLARI, H ;
DIAMOND, PH ;
TERRY, PW .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1990, 2 (01) :1-4
[3]   Observation of spontaneous toroidal rotation inversion in ohmically heated Tokamak plasmas [J].
Bortolon, A. ;
Duval, B. P. ;
Pochelon, A. ;
Scarabosio, A. .
PHYSICAL REVIEW LETTERS, 2006, 97 (23)
[4]   NONLINEAR GYROFLUID DESCRIPTION OF TURBULENT MAGNETIZED PLASMAS [J].
BRIZARD, A .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1992, 4 (05) :1213-1228
[5]   Foundations of nonlinear gyrokinetic theory [J].
Brizard, A. J. ;
Hahm, T. S. .
REVIEWS OF MODERN PHYSICS, 2007, 79 (02) :421-468
[7]   Theory of plasma transport induced by low-frequency hydromagnetic waves [J].
Chen, L .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1999, 104 (A2) :2421-2427
[8]   TOROIDAL ROTATION AND MOMENTUM TRANSPORT [J].
CONNOR, JW ;
COWLEY, SC ;
HASTIE, RJ ;
PAN, LR .
PLASMA PHYSICS AND CONTROLLED FUSION, 1987, 29 (07) :919-931
[9]   Accretion theory of 'spontaneous' rotation in toroidal plasmas [J].
Coppi, B .
NUCLEAR FUSION, 2002, 42 (01) :1-4
[10]   Poloidal rotation dynamics, radial electric field, and neoclassical theory in the jet internal-transport-barrier region -: art. no. 155003 [J].
Crombé, K ;
Andrew, Y ;
Brix, M ;
Giroud, C ;
Hacquin, S ;
Hawkes, NC ;
Murari, A ;
Nave, MFF ;
Ongena, J ;
Parail, V ;
Van Oost, G ;
Voitsekhovitch, I ;
Zastrow, KD .
PHYSICAL REVIEW LETTERS, 2005, 95 (15)