Kinetics of association of anti-lysozyme monoclonal antibody D44.1 and hen-egg lysozyme

被引:11
作者
Altobelli, G
Subramaniam, S [1 ]
机构
[1] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92037 USA
[2] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92037 USA
[3] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
[4] Univ Illinois, Dept Chem Engn, Ctr Biophys & Computat Biol, Urbana, IL 61801 USA
[5] Univ Illinois, Dept Mol & Integrat Physiol, Ctr Biophys & Computat Biol, Urbana, IL 61801 USA
[6] Univ Illinois, Dept Biochem, Ctr Biophys & Computat Biol, Urbana, IL 61801 USA
关键词
D O I
10.1016/S0006-3495(00)76532-5
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Association rate constants for antigen/antibody associations have been computed by Brownian Dynamics simulations of D. L. Ermak and J. A. McCammon, J. Chem. Phys. 69:1352-1360, 1978. The model of monoclonal antibody (mAb) D44.1 is based on crystallographic data (B. C. Braden et at., J. Mol. Biol 243:767-781, 1994). Electrostatic forces that steer the antigen to the antibody-combining site are computed by solving the linearized Poisson-Boltzmann equation. D44.1-HEL complex displays very similar association motifs to a related anti-lysozyme antibody, HyHEL-5-HEL system. The computed association rate constants are comparable in the two systems, although the experimental affinity constants differ by three orders of magnitude (D. Tello et al., Biochem. Sec. Trans. 21:943-946, 1993; K. A. Hibbits et al., Biochemistry. 33:35843590, 1994). Simulations suggest that the origin of the differences in the affinity come from dissociation rate constants. We have also carried out simulation experiments on a number of mutant antibody fragment-MEL associations to address the role of electrostatics and, to a limited extent, the orientational aspects of association.
引用
收藏
页码:2954 / 2965
页数:12
相关论文
共 41 条
[31]   EARLY HIGH-AFFINITY NEUTRALIZING ANTIVIRAL IGG RESPONSES WITHOUT FURTHER OVERALL IMPROVEMENTS OF AFFINITY [J].
ROOST, HP ;
BACHMANN, MF ;
HAAG, A ;
KALINKE, U ;
PLISKA, V ;
HENGARTNER, H ;
ZINKERNAGEL, RM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (05) :1257-1261
[32]  
SCHWARZ FP, 1995, EUR J BIOCHEM, V228, P388
[33]   KINETIC EFFECTS OF MULTIPLE CHARGE MODIFICATIONS IN ENZYME-SUBSTRATE REACTIONS - BROWNIAN DYNAMICS SIMULATIONS OF CU, ZN SUPEROXIDE-DISMUTASE [J].
SINES, JJ ;
MCCAMMON, JA ;
ALLISON, SA .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1992, 13 (01) :66-69
[34]  
Smoluchowski M, 1917, Z PHYS CHEM, V92, P129, DOI DOI 10.1515/ZPCH-1918-9209
[35]   3-DIMENSIONAL STRUCTURE AND THERMODYNAMICS OF ANTIGEN-BINDING BY ANTILYSOZYME ANTIBODIES [J].
TELLO, D ;
GOLDBAUM, FA ;
MARIUZZA, RA ;
YSERN, X ;
SCHWARZ, FP ;
POLJAK, RJ .
BIOCHEMICAL SOCIETY TRANSACTIONS, 1993, 21 (04) :943-946
[36]  
Van Kampen N. G., 1992, STOCHASTIC PROCESSES
[37]   Brownian dynamics simulations of enzyme-substrate encounter [J].
Wade, RC .
BIOCHEMICAL SOCIETY TRANSACTIONS, 1996, 24 (01) :254-259
[38]   CALCULATION OF THE ELECTRIC-POTENTIAL IN THE ACTIVE-SITE CLEFT DUE TO ALPHA-HELIX DIPOLES [J].
WARWICKER, J ;
WATSON, HC .
JOURNAL OF MOLECULAR BIOLOGY, 1982, 157 (04) :671-679
[39]   MAN-MADE ANTIBODIES [J].
WINTER, G ;
MILSTEIN, C .
NATURE, 1991, 349 (6307) :293-299
[40]  
Xavier KA, 1998, BIOPHYS J, V74, P2036