Synchronization in the Kuramoto model: A dynamical gradient network approach

被引:31
作者
Chen, Maoyin [1 ,2 ,3 ]
Shang, Yun [4 ]
Zou, Yong [3 ]
Kurths, Juergen [3 ]
机构
[1] Tsinghua Univ, Tsinghua Natl Lab Inforamt Sci & Technol, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
[3] Univ Potsdam, Inst Phys, D-14469 Potsdam, Germany
[4] Acad Sinica, Inst Math, AMSS, Beijing 100080, Peoples R China
来源
PHYSICAL REVIEW E | 2008年 / 77卷 / 02期
关键词
D O I
10.1103/PhysRevE.77.027101
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We propose a dynamical gradient network approach to consider the synchronization in the Kuramoto model. Our scheme to adaptively adjust couplings is based on the dynamical gradient networks, where the number of links in each time interval is the same as the number of oscillators, but the links in different time intervals are also different. The gradient network in the (n+1)th time interval is decided by the oscillator dynamics in the nth time interval. According to the gradient network in the (n+1)th time interval, only one inlink's coupling for each oscillator is adjusted by a small incremental coupling. During the transition to synchronization, the intensities for all oscillators are identical. Direct numerical simulations fully verify that the synchronization in the Kuramoto model is realized effectively, even if there exist delayed couplings and external noise.
引用
收藏
页数:4
相关论文
共 25 条
[1]   The Kuramoto model:: A simple paradigm for synchronization phenomena [J].
Acebrón, JA ;
Bonilla, LL ;
Vicente, CJP ;
Ritort, F ;
Spigler, R .
REVIEWS OF MODERN PHYSICS, 2005, 77 (01) :137-185
[2]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[3]  
ALBERT R, 2006, PHYS REP, V424, P175
[4]   Synchronization reveals topological scales in complex networks [J].
Arenas, A ;
Díaz-Guilera, A ;
Pérez-Vicente, CJ .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)
[5]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[6]   Paths to synchronization on complex networks [J].
Gomez-Gardenes, Jesus ;
Moreno, Yamir ;
Arenas, Alex .
PHYSICAL REVIEW LETTERS, 2007, 98 (03)
[7]   Synchronization in complex networks with age ordering [J].
Hwang, DU ;
Chavez, M ;
Amann, A ;
Boccaletti, S .
PHYSICAL REVIEW LETTERS, 2005, 94 (13)
[8]  
Kuramoto Y., 1984, CHEM OSCILLATIONS WA
[9]   Multistability in the Kuramoto model with synaptic plasticity [J].
Maistrenko, Yuri L. ;
Lysyansky, Borys ;
Hauptmann, Christian ;
Burylko, Oleksandr ;
Tass, Peter A. .
PHYSICAL REVIEW E, 2007, 75 (06)
[10]   Synchronization of Kuramoto oscillators in scale-free networks [J].
Moreno, Y ;
Pacheco, AF .
EUROPHYSICS LETTERS, 2004, 68 (04) :603-609