Disturbances of the functioning of endoplasmic reticulum: A key mechanism underlying neuronal cell injury?

被引:194
作者
Paschen, W [1 ]
Doutheil, J [1 ]
机构
[1] Max Planck Inst Neurol Res, Dept Expt Neurol, D-50931 Cologne, Germany
关键词
calcium homeostasis; cerebral ischemia; degenerative diseases; endoplasmic reticulum; gene expression; protein synthesis;
D O I
10.1097/00004647-199901000-00001
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Cerebral ischemia leads to a massive increase in cytoplasmic calcium activity resulting from an influx of calcium ions into cells and a release of calcium from mitochondria and endoplasmic reticulum (ER). It is widely believed that this increase in cytoplasmic calcium activity plays a major role in ischemic cell injury in neurons. Recently, this concept was modified, taking into account that disturbances occurring during ischemia are potentially reversible: it then was proposed that after reversible ischemia, calcium ions are taken up by mitochondria, leading to disturbances of oxidative phosphorylation, formation of free radicals, and deterioration of mitochondrial functions. The current review focuses on the possible role of disturbances of ER calcium homeostasis in the pathologic process culminating in ischemic cell injury. The ER is a subcellular compartment that fulfills important functions such as the folding and processing of proteins, all of which are strictly calcium dependent. ER calcium activity is therefore relatively high, lying in the lower millimolar range (i.e., close to that of the extracellular space). Depletion of ER calcium stores is a severe form of stress to which cells react with a highly conserved stress response, the most important changes being a suppression of global protein synthesis and activation of stress gene expression. The response of cells to disturbances of ER calcium homeostasis is almost identical to their response to transient ischemia, implying common underlying mechanisms. Many observations from experimental studies indicate that disturbances of ER calcium homeostasis are involved in the pathologic process leading to ischemic cell injury. Evidence also has been presented that depletion of ER calcium stores alone is sufficient to activate the process of programmed cell death. Furthermore, it has been shown that activation of the ER-resident stress response system by a sublethal form of stress affords tolerance to other, potentially lethal insults. Also, disturbances of ER function have been implicated in the development of degenerative disorders such as prion disease and Alzheimer's disease. Thus, disturbances of the functioning of the ER may be a common denominator of neuronal cell injury in a wide variety of acute and chronic pathologic states of the brain. Finally, there is evidence that ER calcium homeostasis plays a key role in maintaining cells in their physiologic state, since depletion of ER calcium stores causes growth arrest and cell death, whereas cells in which the regulatory link between ER calcium homeostasis and protein synthesis has been blocked enter a state of uncontrolled proliferation.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 192 条
  • [21] Global cerebral ischemia activates nuclear factor-kappa B prior to evidence of DNA fragmentation
    Clemens, JA
    Stephenson, DT
    Dixon, EP
    Smalstig, EB
    Mincy, RE
    Rash, KS
    Little, SP
    [J]. MOLECULAR BRAIN RESEARCH, 1997, 48 (02): : 187 - 196
  • [22] EFFECT OF ISCHEMIA AND RECIRCULATION ON PROTEIN-SYNTHESIS IN RAT-BRAIN
    COOPER, HK
    ZALEWSKA, T
    KAWAKAMI, S
    HOSSMANN, KA
    KLEIHUES, P
    [J]. JOURNAL OF NEUROCHEMISTRY, 1977, 28 (05) : 929 - 934
  • [23] DeGracia DJ, 1996, J NEUROCHEM, V67, P2005
  • [24] The eIF-2 alpha kinases and the control of protein synthesis
    deHaro, C
    Mendez, R
    Santoyo, J
    [J]. FASEB JOURNAL, 1996, 10 (12) : 1378 - 1387
  • [25] Distelhorst CW, 1996, ONCOGENE, V12, P2051
  • [26] PROTEIN-SYNTHESIS IN THE HIPPOCAMPAL SLICE - TRANSIENT INHIBITION BY GLUTAMATE AND LASTING INHIBITION BY ISCHEMIA
    DJURICIC, B
    ROHN, G
    PASCHEN, W
    HOSSMANN, KA
    [J]. METABOLIC BRAIN DISEASE, 1994, 9 (03) : 235 - 247
  • [27] ABROGATION OF TRANSLATION INITIATION-FACTOR EIF-2 PHOSPHORYLATION CAUSES MALIGNANT TRANSFORMATION OF NIH 3T3 CELLS
    DONZE, O
    JAGUS, R
    KOROMILAS, AE
    HERSHEY, JWB
    SONENBERG, N
    [J]. EMBO JOURNAL, 1995, 14 (15) : 3828 - 3834
  • [28] Relation of neuronal endoplasmic reticulum calcium homeostasis to ribosomal aggregation and protein synthesis: implications for stress-induced suppression of protein synthesis
    Doutheil, J
    Gissel, C
    Oschlies, U
    Hossmann, KA
    Paschen, W
    [J]. BRAIN RESEARCH, 1997, 775 (1-2) : 43 - 51
  • [29] EFFECTS OF HYPOXANTHINE XANTHINE-OXIDASE ON CA2+ STORES AND PROTEIN-SYNTHESIS IN HUMAN ENDOTHELIAL-CELLS
    DREHER, D
    JORNOT, L
    JUNOD, AF
    [J]. CIRCULATION RESEARCH, 1995, 76 (03) : 388 - 395
  • [30] DRUMMOND IAS, 1987, J BIOL CHEM, V262, P12801