Particle selection for laser-accelerated proton therapy feasibility study

被引:67
作者
Fourkal, E
Li, JS
Ding, M
Tajima, T
Ma, CM
机构
[1] Fox Chase Canc Ctr, Dept Radiat Oncol, Philadelphia, PA 19111 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA USA
关键词
proton radiotherapy; dosimetry; laser-proton acceleration;
D O I
10.1118/1.1586268
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
In this paper we present calculations for the design of a particle selection system for laser-accelerated proton therapy. Laser-accelerated protons coming from a thin high-density foil have broad energy and angular spectra leading to dose distributions that cannot be directly used for therapeutic applications. Our solution to this problem is a compact particle selection and collimation device that delivers small pencil beams of protons with desired energy spectra. We propose a spectrometer-like particle selection and beam modulation system in which the magnetic field will be used to spread the protons spatially according to their energies and emitting angles. Subsequently, an aperture will be used to select the protons within a therapeutic window of energy (energy modulation). It will be shown that for the effective proton spatial differentiation, the primary collimation device should be used, which will collimate protons to the desired angular distribution and limit the spatial mixing of different energy protons once they have traveled through the magnetic system. Due to the angular proton distribution, the spatial mixing of protons of different energies will always be present and it will result in a proton energy spread with the width depending on the energy. For 250 MeV protons, the width (from the maximum to the minimum energy) is found to be 50 MeV for the magnetic field configuration used in our calculations. As the proton energy decreases, its energy width decreases as well, and for 80 MeV protons it equals 9 MeV. The presence of the energy width in the proton energy distribution will modify the depth dose curves needed for the energy modulation calculation. The matching magnetic field setup will ensure the refocusing of the selected protons and the final beam will be collimated by the secondary collimator. The calculations presented in this article show that the dose rate that the selection system can yield is on the order of D=260 Gy/min for a field size of 1 X 1 cm(2). (C) 2003 American Association of Physicists in Medicine.
引用
收藏
页码:1660 / 1670
页数:11
相关论文
共 40 条
[11]   FAST IONS AND HOT-ELECTRONS IN THE LASER-PLASMA INTERACTION [J].
GITOMER, SJ ;
JONES, RD ;
BEGAY, F ;
EHLER, AW ;
KEPHART, JF ;
KRISTAL, R .
PHYSICS OF FLUIDS, 1986, 29 (08) :2679-2688
[12]   A GENERALIZED PENCIL BEAM ALGORITHM FOR OPTIMIZATION OF RADIATION-THERAPY [J].
GUSTAFSSON, A ;
LIND, BK ;
BRAHME, A .
MEDICAL PHYSICS, 1994, 21 (03) :343-357
[13]  
JONGEN YA, 1996, CYCLOTRONS THEIR APP, P606
[14]   ZUR EINFACHSTREUUNG UND MEHRFACHSTREUUNG GELADENER TEILCHEN [J].
KEIL, E ;
ZEITLER, E ;
ZINN, W .
ZEITSCHRIFT FUR NATURFORSCHUNG PART A-ASTROPHYSIK PHYSIK UND PHYSIKALISCHE CHEMIE, 1960, 15 (12) :1031-1038
[15]  
KEY M, 1999, 1 INT C IN FUS SCI A
[16]  
KJELLBERG RN, 1986, ANN CLIN RES, V18, P17
[17]   JXB HEATING BY VERY INTENSE LASER-LIGHT [J].
KRUER, WL ;
ESTABROOK, K .
PHYSICS OF FLUIDS, 1985, 28 (01) :430-432
[18]  
Landau L, 1944, J PHYS-USSR, V8, P201
[19]   Intensity modulation methods for proton radiotherapy [J].
Lomax, A .
PHYSICS IN MEDICINE AND BIOLOGY, 1999, 44 (01) :185-205
[20]  
MA CM, 2001, MED PHYS, V28, P1236