Intronic snoRNA biosynthesis in Saccharomyces cerevisiae depends on the lariat-debranching enzyme:: Intron length effects and activity of a precursor snoRNA

被引:99
作者
Ooi, SL
Samarsky, DA
Fournier, MJ
Boeke, JD
机构
[1] Johns Hopkins Univ, Sch Med, Dept Mol Biol & Genet, Baltimore, MD 21205 USA
[2] Univ Massachusetts, Dept Biochem & Mol Biol, Amherst, MA 01003 USA
关键词
DBR1; intronic snoRNA processing; rRNA methylation; yeast;
D O I
10.1017/S1355838298980785
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The eukaryotic small nucleolar RNAs (snoRNAs) are involved in processing of pre-rRNA and modification of rRNA nucleotides. Some snoRNAs are derived from mono- or polycistronic transcription units, whereas others are encoded in introns of protein genes. The present study addresses the role of the RNA lariat-debranching enzyme (Dbr1p) in the synthesis and function of intronic snoRNAs in the yeast Saccharomyces cerevisiae. Intronic snoRNA production was determined to depend on Dbr1p. Accumulation of mature intronic snoRNAs is reduced in a dbr1 mutant; instead, intronic snoRNAs are "trapped" within host intron lariats. Interestingly, the extent of intronic snoRNA accumulation in the form of lariats in dbr1 cells varied among different intronic snoRNAs. Intronic snoRNAs encoded within shorter introns, such as U24 and snR38, accumulate more unprocessed lariat precursors than those encoded within longer introns, e.g., U18 and snR39. This correlation was corroborated by experiments conducted with model intron:U24 snoRNA constructs. These results support a splicing-dependent exonucleolytic pathway for the biosynthesis of intronic snoRNAs. Curiously, U24 in a lariat may be functional in directing methylation of ribosomal RNA.
引用
收藏
页码:1096 / 1110
页数:15
相关论文
共 44 条
[1]  
[Anonymous], CURRENT PROTOCOLS MO
[2]   Guiding ribose methylation of rRNA [J].
Bachellerie, JP ;
Cavaille, J .
TRENDS IN BIOCHEMICAL SCIENCES, 1997, 22 (07) :257-261
[3]   The RNA world of the nucleolus: Two major families of small RNAs defined by different box elements with related functions [J].
Balakin, AG ;
Smith, L ;
Fournier, MJ .
CELL, 1996, 86 (05) :823-834
[4]  
Bortolin ML, 1998, RNA, V4, P445
[5]  
Brachmann CB, 1998, YEAST, V14, P115
[6]  
BROWN T, 1993, CURRENT PROTOCOLS MO
[7]   Processing of the intron-encoded U16 and U18 snoRNAs: The conserved C and D boxes control both the processing reaction and the stability of the mature snoRNA [J].
Caffarelli, E ;
Fatica, A ;
Prislei, S ;
DeGregorio, E ;
Fragapane, P ;
Bozzoni, I .
EMBO JOURNAL, 1996, 15 (05) :1121-1131
[8]   IN-VITRO STUDY OF PROCESSING OF THE INTRON-ENCODED U16 SMALL NUCLEOLAR RNA IN XENOPUS-LAEVIS [J].
CAFFARELLI, E ;
ARESE, M ;
SANTORO, B ;
FRAGAPANE, P ;
BOZZONI, I .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (05) :2966-2974
[9]   Targeted ribose methylation of RNA in vivo directed by tailored antisense RNA guides [J].
Cavaille, J ;
Nicoloso, M ;
Bachellerie, JP .
NATURE, 1996, 383 (6602) :732-735
[10]   Processing of fibrillarin-associated snoRNAs from pre-mRNA introns: An exonucleolytic process exclusively directed by the common stem-box terminal structure [J].
Cavaille, J ;
Bachellerie, JP .
BIOCHIMIE, 1996, 78 (06) :443-456