Ultrasensitivity and noise propagation in a synthetic transcriptional cascade

被引:369
作者
Hooshangi, S
Thiberge, S
Weiss, R
机构
[1] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Mol Biol, Princeton, NJ 08544 USA
关键词
gene regulation; gene network; low-pass filter; stochastic;
D O I
10.1073/pnas.0408507102
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The precise nature of information flow through a biological network, which is governed by factors such as response sensitivities and noise propagation, greatly affects the operation of biological systems. Quantitative analysis of these properties is often difficult in naturally occurring systems but can be greatly facilitated by studying simple synthetic networks. Here, we report the construction of synthetic transcriptional cascades comprising one, two, and three repression stages. These model systems enable us to analyze sensitivity and noise propagation as a function of network complexity. We demonstrate experimentally steady-state switching behavior that becomes sharper with longer cascades. The regulatory mechanisms that confer this ultrasensitive response both attenuate and amplify phenotypical variations depending on the system's input conditions. Although noise attenuation allows the cascade to act as a low-pass filter by rejecting short-lived perturbations in input conditions, noise amplification results in loss of synchrony among a cell population. The experimental results demonstrating the above network properties correlate well with simulations of a simple mathematical model of the system.
引用
收藏
页码:3581 / 3586
页数:6
相关论文
共 43 条
[1]   TETRACYCLINE DIFFUSION THROUGH PHOSPHOLIPID-BILAYERS AND BINDING TO PHOSPHOLIPIDS [J].
ARGAST, M ;
BECK, CF .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1984, 26 (02) :263-265
[2]  
Arkin A, 1998, GENETICS, V149, P1633
[3]  
Arnone MI, 1997, DEVELOPMENT, V124, P1851
[4]   Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli [J].
Atkinson, MR ;
Savageau, MA ;
Myers, JT ;
Ninfa, AJ .
CELL, 2003, 113 (05) :597-607
[5]   Spatiotemporal control of gene expression with pulse-generating networks [J].
Basu, S ;
Mehreja, R ;
Thiberge, S ;
Chen, MT ;
Weiss, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (17) :6355-6360
[6]   Engineering stability in gene networks by autoregulation [J].
Becskei, A ;
Serrano, L .
NATURE, 2000, 405 (6786) :590-593
[7]   Noise in eukaryotic gene expression [J].
Blake, WJ ;
Kærn, M ;
Cantor, CR ;
Collins, JJ .
NATURE, 2003, 422 (6932) :633-637
[8]  
CHOCK PB, 1977, P NATL ACAD SCI USA, V74, P2766, DOI 10.1073/pnas.74.7.2766
[9]   The transcriptional program of sporulation in budding yeast [J].
Chu, S ;
DeRisi, J ;
Eisen, M ;
Mulholland, J ;
Botstein, D ;
Brown, PO ;
Herskowitz, I .
SCIENCE, 1998, 282 (5389) :699-705
[10]   A genomic regulatory network for development [J].
Davidson, EH ;
Rast, JP ;
Oliveri, P ;
Ransick, A ;
Calestani, C ;
Yuh, CH ;
Minokawa, T ;
Amore, G ;
Hinman, V ;
Arenas-Mena, C ;
Otim, O ;
Brown, CT ;
Livi, CB ;
Lee, PY ;
Revilla, R ;
Rust, AG ;
Pan, ZJ ;
Schilstra, MJ ;
Clarke, PJC ;
Arnone, MI ;
Rowen, L ;
Cameron, RA ;
McClay, DR ;
Hood, L ;
Bolouri, H .
SCIENCE, 2002, 295 (5560) :1669-1678