Percolation on random Johnson-Mehl tessellations and related models

被引:12
作者
Bollobas, Bela
Riordan, Oliver
机构
[1] Univ Cambridge, Dept Math & Math Stat, Cambridge CB3 0WB, England
[2] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
基金
美国国家科学基金会;
关键词
D O I
10.1007/s00440-007-0066-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We make use of the recent proof that the critical probability for percolation on random Voronoi tessellations is 1/2 to prove the corresponding result for random Johnson-Mehl tessellations, as well as for two-dimensional slices of higher-dimensional Voronoi tessellations. Surprisingly, the proof is a little simpler for these more complicated models.
引用
收藏
页码:319 / 343
页数:25
相关论文
共 27 条
[1]   Kinetics of phase change I - General theory [J].
Avrami, M .
JOURNAL OF CHEMICAL PHYSICS, 1939, 7 (12) :1103-1112
[2]  
Avrami M., 1940, J CHEM PHYS, V8, P212, DOI 10.1063/1.1750631
[3]  
Bollobas B., 2006, PERCOLATION
[4]   The critical probability for random Voronoi percolation in the plane is 1/2 [J].
Bollobas, Bela ;
Riordan, Oliver .
PROBABILITY THEORY AND RELATED FIELDS, 2006, 136 (03) :417-468
[5]  
Chiu SN, 1997, ANN APPL PROBAB, V7, P802
[6]  
Delesse A, 1848, ANN MINES, V13, P379
[7]  
Dirichlet G.L., 1850, J. fur die reine und angewandte Mathematik (Crelles J.), V1850, P209, DOI DOI 10.1515/CRLL.1850.40.209
[8]   RANDOM AND COOPERATIVE SEQUENTIAL ADSORPTION [J].
EVANS, JW .
REVIEWS OF MODERN PHYSICS, 1993, 65 (04) :1281-1329
[9]   The Johnson-Mehl-Avrami-Kolmogorov model: A brief review [J].
Fanfoni, M ;
Tomellini, M .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA D-CONDENSED MATTER ATOMIC MOLECULAR AND CHEMICAL PHYSICS FLUIDS PLASMAS BIOPHYSICS, 1998, 20 (7-8) :1171-1182
[10]   Film growth viewed as stochastic dot processes [J].
Fanfoni, M ;
Tomellini, M .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2005, 17 (17) :R571-R605