The critical probability for random Voronoi percolation in the plane is 1/2

被引:79
作者
Bollobas, Bela [1 ]
Riordan, Oliver
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
[2] Univ Cambridge Trinity Coll, Cambridge CB2 1TQ, England
基金
美国国家科学基金会;
关键词
D O I
10.1007/s00440-005-0490-z
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study percolation in the following random environment: let Z be a Poisson process of constant intensity on R-2, and form the Voronoi tessellation of R-2 with respect to Z. Colour each Voronoi cell black with probability p, independently of the other cells. We show that the critical probability is 1/2. More precisely, if p > 1/2 then the union of the black cells contains an infinite component with probability 1, while if p < 1/2 then the distribution of the size of the component of black cells containing a given point decays exponentially. These results are analogous to Kesten's results for bond percolation in Z(2). The result corresponding to Harris' Theorem for bond percolation in R-2 is known: Zvavitch noted that one of the many proofs of this result can easily be adapted to the random Voronoi setting. For Kesten's results, none of the existing proofs seems to adapt. The methods used here also give a new and very simple proof of Kesten's Theorem for R-2; we hope they will be applicable in other contexts as well.
引用
收藏
页码:417 / 468
页数:52
相关论文
共 30 条
[1]   INEQUALITY FOR WEIGHTS OF 2 FAMILIES OF SETS, THEIR UNIONS AND INTERSECTIONS [J].
AHLSWEDE, R ;
DAYKIN, DE .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1978, 43 (03) :183-185
[2]  
Aizenman M., 1998, IMA VOL MATH APPL, V99, P1
[3]  
Alexander KS, 1996, ANN APPL PROBAB, V6, P466
[4]   Continuum percolation with steps in the square or the disc [J].
Balister, P ;
Bollobás, B ;
Walters, M .
RANDOM STRUCTURES & ALGORITHMS, 2005, 26 (04) :392-403
[5]   Percolation in Voronoi tilings [J].
Balister, P ;
Bollobás, B ;
Quas, A .
RANDOM STRUCTURES & ALGORITHMS, 2005, 26 (03) :310-318
[6]   Conformal invariance of Voronoi percolation [J].
Benjamini, I ;
Schramm, O .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 197 (01) :75-107
[7]  
BOLLOBAS B, IN PRESS B LONDON MA
[8]  
BOLLOBAS B, IN PRESS RANDOM STRU
[9]   THE INFLUENCE OF VARIABLES IN PRODUCT-SPACES [J].
BOURGAIN, J ;
KAHN, J ;
KALAI, G ;
KATZNELSON, Y ;
LINIAL, N .
ISRAEL JOURNAL OF MATHEMATICS, 1992, 77 (1-2) :55-64
[10]  
Broadbent S. R., 1957, P CAMBRIDGE PHIL SOC, V53, P629, DOI [DOI 10.1017/S0305004100032680, 10.1017/S0305004100032680]