Entanglement of spin waves among four quantum memories

被引:121
作者
Choi, K. S. [1 ]
Goban, A. [1 ]
Papp, S. B. [1 ]
van Enk, S. J. [2 ]
Kimble, H. J. [1 ]
机构
[1] CALTECH, Norman Bridge Lab Phys 12 33, Pasadena, CA 91125 USA
[2] Univ Oregon, Dept Phys, Eugene, OR 97403 USA
基金
美国国家科学基金会;
关键词
SCHRODINGER CAT STATE; ATOMIC ENSEMBLES; NETWORKS; DIFFERENTIATE; DISTANCE; SYSTEMS;
D O I
10.1038/nature09568
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum networks are composed of quantum nodes that interact coherently through quantum channels, and open a broad frontier of scientific opportunities(1). For example, a quantum network can serve as a 'web' for connecting quantum processors for computation(2,3) and communication(4), or as a 'simulator' allowing investigations of quantum critical phenomena arising from interactions among the nodes mediated by the channels(5,6). The physical realization of quantum networks generically requires dynamical systems capable of generating and storing entangled states among multiple quantum memories, and efficiently transferring stored entanglement into quantum channels for distribution across the network. Although such capabilities have been demonstrated for diverse bipartite systems(7-12), entangled states have not been achieved for interconnects capable of 'mapping' multipartite entanglement stored in quantum memories to quantum channels. Here we demonstrate measurement-induced entanglement stored in four atomic memories; user-controlled, coherent transfer of the atomic entanglement to four photonic channels; and characterization of the full quadripartite entanglement using quantum uncertainty relations(13-16). Our work therefore constitutes an advance in the distribution of multipartite entanglement across quantum networks. We also show that our entanglement verification method is suitable for studying the entanglement order of condensed-matter systems in thermal equilibrium(17,18).
引用
收藏
页码:412 / U235
页数:7
相关论文
共 47 条
[1]   Entanglement percolation in quantum networks [J].
Acin, Antonio ;
Cirac, J. Ignacio ;
Lewenstein, Maciej .
NATURE PHYSICS, 2007, 3 (04) :256-259
[2]   Entanglement in many-body systems [J].
Amico, Luigi ;
Fazio, Rosario ;
Osterloh, Andreas ;
Vedral, Vlatko .
REVIEWS OF MODERN PHYSICS, 2008, 80 (02) :517-576
[3]   Experimental creation of a fully inseparable tripartite continuous-variable state [J].
Aoki, T ;
Takei, N ;
Yonezawa, H ;
Wakui, K ;
Hiraoka, T ;
Furusawa, A ;
van Loock, P .
PHYSICAL REVIEW LETTERS, 2003, 91 (08) :804041-804044
[4]   Generation of paired photons with controllable waveforms [J].
Balic, V ;
Braje, DA ;
Kolchin, P ;
Yin, GY ;
Harris, SE .
PHYSICAL REVIEW LETTERS, 2005, 94 (18) :1-4
[5]   Unambiguous discrimination between linearly independent quantum states [J].
Chefles, A .
PHYSICS LETTERS A, 1998, 239 (06) :339-347
[6]   Mapping photonic entanglement into and out of a quantum memory [J].
Choi, K. S. ;
Deng, H. ;
Laurat, J. ;
Kimble, H. J. .
NATURE, 2008, 452 (7183) :67-U4
[7]   Functional quantum nodes for entanglement distribution over scalable quantum networks [J].
Chou, Chin-Wen ;
Laurat, Julien ;
Deng, Hui ;
Choi, Kyung Soo ;
de Riedmatten, Hugues ;
Felinto, Daniel ;
Kimble, H. Jeff .
SCIENCE, 2007, 316 (5829) :1316-1320
[8]   Measurement-induced entanglement for excitation stored in remote atomic ensembles [J].
Chou, CW ;
de Riedmatten, H ;
Felinto, D ;
Polyakov, SV ;
van Enk, SJ ;
Kimble, HJ .
NATURE, 2005, 438 (7069) :828-832
[9]  
Chuang I. N., 2000, Quantum Computation and Quantum Information
[10]   Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip [J].
Colombe, Yves ;
Steinmetz, Tilo ;
Dubois, Guilhem ;
Linke, Felix ;
Hunger, David ;
Reichel, Jakob .
NATURE, 2007, 450 (7167) :272-U9