Targeting F508del-CFTR to develop rational new therapies for cystic fibrosis

被引:40
作者
Cai, Zhi-wei [1 ]
Liu, Jia [1 ]
Li, Hong-yu [1 ]
Sheppard, David N. [1 ]
机构
[1] Univ Bristol, Sch Physiol & Pharmacol, Bristol BS8 1TD, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
ATP-binding cassette transporter; epithelial ion transport; cystic fibrosis; CFTR; chloride ion channel; F508del; CFTR corrector; CFTR potentiator; TRANSMEMBRANE-CONDUCTANCE-REGULATOR; NUCLEOTIDE-BINDING DOMAIN; SMALL-MOLECULE CORRECTORS; CHLORIDE CHANNEL ACTIVITY; POTENTIATES WILD-TYPE; TRAFFICKING DEFECT; ABC TRANSPORTER; CL-CHANNELS; DELTA-F508; MUTATION; GATING BEHAVIOR;
D O I
10.1038/aps.2011.71
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The mutation F508del is the commonest cause of the genetic disease cystic fibrosis (CF). CF disrupts the function of many organs in the body, most notably the lungs, by perturbing salt and water transport across epithelial surfaces. F508del causes harm in two principal ways. First, the mutation prevents delivery of the cystic fibrosis transmembrane conductance regulator (CFTR) to its correct cellular location, the apical (lumen-facing) membrane of epithelial cells. Second, F508del perturbs the Cl-channel function of CFTR by disrupting channel gating. Here, we discuss the development of rational new therapies for CF that target F508del-CFTR. We highlight how structural studies provide new insight into the role of F508 in the regulation of channel gating by cycles of ATP binding and hydrolysis. We emphasize the use of high-throughput screening to identify lead compounds for therapy development. These compounds include CFTR correctors that restore the expression of F508del-CFTR at the apical membrane of epithelial cells and CFTR potentiators that rescue the F508del-CFTR gating defect. Initial results from clinical trials of CFTR correctors and potentiators augur well for the development of small molecule therapies that target the root cause of CF: mutations in CFTR.
引用
收藏
页码:693 / 701
页数:9
相关论文
共 73 条
[1]   Effect of VX-770 in Persons with Cystic Fibrosis and the G551D-CFTR Mutation [J].
Accurso, Frank J. ;
Rowe, Steven M. ;
Clancy, J. P. ;
Boyle, Michael P. ;
Dunitz, Jordan M. ;
Durie, Peter R. ;
Sagel, Scott D. ;
Hornick, Douglas B. ;
Konstan, Michael W. ;
Donaldson, Scott H. ;
Moss, Richard B. ;
Pilewski, Joseph M. ;
Rubenstein, Ronald C. ;
Uluer, Ahmet Z. ;
Aitken, Moira L. ;
Freedman, Steven D. ;
Rose, Lynn M. ;
Mayer-Hamblett, Nicole ;
Dong, Qunming ;
Zha, Jiuhong ;
Stone, Anne J. ;
Olson, Eric R. ;
Ordonez, Claudia L. ;
Campbell, Preston W. ;
Ashlock, Melissa A. ;
Ramsey, Bonnie W. .
NEW ENGLAND JOURNAL OF MEDICINE, 2010, 363 (21) :1991-2003
[2]   Capsaicin potentiates wild-type and mutant cystic fibrosis transmembrane conductance regulator chloride-channel currents [J].
Ai, T ;
Bompadre, SG ;
Wang, XH ;
Hu, SH ;
Li, M ;
Hwang, TC .
MOLECULAR PHARMACOLOGY, 2004, 65 (06) :1415-1426
[3]   The first nucleotide binding domain of cystic fibrosis transmembrane conductance regulator is a site of stable nucleotide interaction, whereas the second is a site of rapid turnover [J].
Aleksandrov, L ;
Aleksandrov, AA ;
Chang, XB ;
Riordan, JR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (18) :15419-15425
[4]   Cystic Fibrosis Transmembrane Conductance Regulator: Using Differential Reactivity toward Channel-Permeant and Channel-Impermeant Thiol-Reactive Probes To Test a Molecular Model for the Pore [J].
Alexander, Christopher ;
Ivetac, Anthony ;
Liu, Xuehong ;
Norimatsu, Yohei ;
Serrano, Jose R. ;
Landstrom, Allison ;
Sansom, Mark ;
Dawson, David C. .
BIOCHEMISTRY, 2009, 48 (42) :10078-10088
[5]  
Amaral MD, 2011, CURR DRUG TARGETS, V12, P683
[6]   NUCLEOSIDE TRIPHOSPHATES ARE REQUIRED TO OPEN THE CFTR CHLORIDE CHANNEL [J].
ANDERSON, MP ;
BERGER, HA ;
RICH, DP ;
GREGORY, RJ ;
SMITH, AE ;
WELSH, MJ .
CELL, 1991, 67 (04) :775-784
[7]   DEMONSTRATION THAT CFTR IS A CHLORIDE CHANNEL BY ALTERATION OF ITS ANION SELECTIVITY [J].
ANDERSON, MP ;
GREGORY, RJ ;
THOMPSON, S ;
SOUZA, DW ;
PAUL, S ;
MULLIGAN, RC ;
SMITH, AE ;
WELSH, MJ .
SCIENCE, 1991, 253 (5016) :202-205
[8]   Adapting proteostasis for disease intervention [J].
Balch, William E. ;
Morimoto, Richard I. ;
Dillin, Andrew ;
Kelly, Jeffery W. .
SCIENCE, 2008, 319 (5865) :916-919
[9]   Prolonged nonhydrolytic interaction of nucleotide with CFTR's NH2-terminal nucleotide binding domain and its role in channel gating [J].
Basso, C ;
Vergani, P ;
Nairn, AC ;
Gadsby, DC .
JOURNAL OF GENERAL PHYSIOLOGY, 2003, 122 (03) :333-348
[10]   PURIFICATION AND FUNCTIONAL RECONSTITUTION OF THE CYSTIC-FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR (CFTR) [J].
BEAR, CE ;
LI, CH ;
KARTNER, N ;
BRIDGES, RJ ;
JENSEN, TJ ;
RAMJEESINGH, M ;
RIORDAN, JR .
CELL, 1992, 68 (04) :809-818