The influence of presaccharification, fermentation temperature and yeast strain on ethanol production from sugarcane bagasse

被引:67
作者
de Souza, Carlos J. A. [1 ]
Costa, Daniela A. [1 ,2 ]
Rodrigues, Marina Q. R. B. [1 ]
dos Santos, Ancely F. [1 ]
Lopes, Mariana R. [1 ]
Abrantes, Aline B. P. [1 ]
Costa, Patricia dos Santos [1 ]
Silveira, Wendel Batista [2 ]
Passos, Flavia M. L. [2 ]
Fietto, Luciano G. [1 ]
机构
[1] Univ Fed Vicosa, Dept Bioquim & Biol Mol, BR-36571000 Vicosa, MG, Brazil
[2] Univ Fed Vicosa, Dept Microbiol, BR-36571000 Vicosa, MG, Brazil
关键词
Simultaneous saccharification and fermentation; Ethanol; Sugarcane bagasse; Thermotolerant yeast; KLUYVEROMYCES-MARXIANUS; SIMULTANEOUS SACCHARIFICATION; SACCHAROMYCES-CEREVISIAE; LIGNOCELLULOSIC MATERIALS; ENZYMATIC-HYDROLYSIS; THERMOTOLERANT; PRETREATMENT; BIOETHANOL; TECHNOLOGIES; RESIDUES;
D O I
10.1016/j.biortech.2012.01.024
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Ethanol can be produced from cellulosic biomass in a process known as simultaneous saccharification and fermentation (SSF). The presence of yeast together with the cellulolytic enzyme complex reduces the accumulation of sugars within the reactor, increasing the ethanol yield and saccharification rate. This paper reports the isolation of Saccharomyces cerevisiae LBM-1, a strain capable of growth at 42 degrees C. In addition, S. cerevisiae LBM-1 and Kluyveromyces marxianus UFV-3 were able to ferment sugar cane bagasse in SSF processes at 37 and 42 degrees C. Higher ethanol yields were observed when fermentation was initiated after presaccharification at 50 degrees C than at 37 or 42 degrees C. Furthermore, the volumetric productivity of fermentation increased with presaccharification time, from 0.43 g/L/h at 0 h to 1.79 g/L/h after 72 h of presaccharification. The results suggest that the use of thermotolerant yeasts and a presaccharification stage are key to increasing yields in this process. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:63 / 69
页数:7
相关论文
共 30 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]   COMPARISON OF SHF AND SSF PROCESSES FROM SUGAR CANE BAGASSE FOR ETHANOL PRODUCTION BY Saccharotnyces cerevisiae. [J].
Alves dos Santos, Julliana Ribeiro ;
Souto-Maior, Ana Maria ;
Gouveia, Ester Ribeiro ;
Martin, Carlos .
QUIMICA NOVA, 2010, 33 (04) :904-908
[3]   Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review [J].
Alvira, P. ;
Tomas-Pejo, E. ;
Ballesteros, M. ;
Negro, M. J. .
BIORESOURCE TECHNOLOGY, 2010, 101 (13) :4851-4861
[4]  
[Anonymous], 2012, Molecular Cloning: A Laboratory Manual
[5]   Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875 [J].
Ballesteros, M ;
Oliva, JM ;
Negro, MJ ;
Manzanares, P ;
Ballesteros, I .
PROCESS BIOCHEMISTRY, 2004, 39 (12) :1843-1848
[6]   ISOLATION OF THERMOTOLERANT, FERMENTATIVE YEASTS GROWING AT 52-DEGREES-C AND PRODUCING ETHANOL AT 45-DEGREES-C AND 50-DEGREES-C [J].
BANAT, IM ;
NIGAM, P ;
MARCHANT, R .
WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 1992, 8 (03) :259-263
[7]   Production of bioethanol from sugarcane bagasse: Status and perspectives [J].
Cardona, C. A. ;
Quintero, J. A. ;
Paz, I. C. .
BIORESOURCE TECHNOLOGY, 2010, 101 (13) :4754-4766
[8]   PRODUCTION, PROPERTIES AND APPLICATION OF CELLULASES IN THE HYDROLYSIS OF AGROINDUSTRIAL RESIDUES [J].
de Castro, Aline Machado ;
Pereira, Nei, Jr. .
QUIMICA NOVA, 2010, 33 (01) :181-U208
[9]   Biosolutions to the energy problem [J].
Demain, Arnold L. .
JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2009, 36 (03) :319-332
[10]   Ethanol production through simultaneous saccharification and fermentation of switchgrass using Saccharomyces cerevisiae D5A and thermotolerant Kluyveromyces marxianus IMB strains [J].
Faga, Brian A. ;
Wilkins, Mark R. ;
Banat, Ibrahim M. .
BIORESOURCE TECHNOLOGY, 2010, 101 (07) :2273-2279