Schur-Zassenhaus theorem for X-permutable subgroups

被引:17
作者
Guo, Wenbin [1 ,2 ]
Shum, K. P. [3 ]
Skiba, Alexander N. [4 ]
机构
[1] Xuzhou Normal Univ, Dept Math, Xuzhou 221116, Jiangsu, Peoples R China
[2] Univ Sci & Technol China, Dept Math, Hefei 230026, Peoples R China
[3] Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
[4] Gomel State Univ F Skorina, Dept Math, Gomel 246028, BELARUS
关键词
finite groups; X-permutable subgroups; complements; p-supersoluble groups;
D O I
10.1142/S1005386708000187
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A and B be subgroups of a group G, and 0 not equal X subset of G. Then A is said to be X-permutable with B if there exists an element x is an element of X such that AB(x) = B(x)A. In this paper, a new version of Schur-Zassenhaus theorem is obtained for X-permutable subgroups, and hence, Question 5.1 in [6] is answered.
引用
收藏
页码:185 / 192
页数:8
相关论文
共 10 条
[1]  
Gorenstein D., 1980, FINITE GROUPS
[2]  
GUO W, 2005, SE ASIAN B MATH, V29, P493
[3]  
GUO W, 2000, THEORY CLASSES GROUP
[4]  
Guo WB, 2006, PUBL MATH-DEBRECEN, V68, P433
[5]   G-covering systems of subgroups for classes of p-supersoluble and p-nilpotent finite groups [J].
Guo, WB ;
Shum, KP ;
Skiba, AN .
SIBERIAN MATHEMATICAL JOURNAL, 2004, 45 (03) :433-442
[6]   X-semipermutable subgroups of finite groups [J].
Guo, Wenbin ;
Shum, K. P. ;
Skiba, Alexander N. .
JOURNAL OF ALGEBRA, 2007, 315 (01) :31-41
[7]  
Huppert B., 1967, GRUNDLEHREN MATH WIS, V134
[8]  
Kegel O. H., 1961, ARCH MATH, V12, P90, DOI DOI 10.1007/BF01650529
[9]  
ROBINSON JS, 1982, COURSE THEORY GROUPS
[10]  
Weinstein M., 1982, Between Nilpotent and Solvable