G-covering systems of subgroups for classes of p-supersoluble and p-nilpotent finite groups

被引:45
作者
Guo, WB
Shum, KP
Skiba, AN
机构
关键词
Sylow subgroup; supplement; maximal subgroup; p-nilpotent group; p-supersoluble group; covering system of subgroups;
D O I
10.1023/B:SIMJ.0000028608.59920.af
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be a class of groups. Given a group G, assign to G some set of its subgroups Sigma = Sigma(G). We say that Sigma is a G-covering system of subgroups for F (or, in other words, an F-covering system of subgroups in G) if G is an element of F whenever either Sigma = circle divide or Sigma not equal circle divide and every subgroup in Sigma belongs to F. We find the systems of subgroups in the class of finite soluble groups G which are simultaneously the G-covering systems of subgroups for the classes of p-supersoluble and p-nilpotent groups.
引用
收藏
页码:433 / 442
页数:10
相关论文
共 16 条
[1]  
[Anonymous], 1989, Formations of Algebraic Systems
[2]  
[Anonymous], 1978, Formations of Finite Groups
[3]   ON FINITE FACTORIZABLE GROUPS [J].
ARAD, Z ;
FISMAN, E .
JOURNAL OF ALGEBRA, 1984, 86 (02) :522-548
[4]   ON FINITE-GROUPS WITH NILPOTENT SYLOW-NORMALIZERS [J].
BIANCHI, M ;
MAURI, AGB ;
HAUCK, P .
ARCHIV DER MATHEMATIK, 1986, 47 (03) :193-197
[5]  
Doerk K., 1992, GRUYTER EXP MATH, V4
[6]   FINITE SOLUBLE GROUPS WITH SUPERSOLUBLE SYLOW NORMALIZERS [J].
FEDRI, V ;
SERENA, L .
ARCHIV DER MATHEMATIK, 1988, 50 (01) :11-18
[7]   G-covering subgroup systems for the classes of supersoluble and nilpotent groups [J].
Guo, WB ;
Shum, KP ;
Skiba, A .
ISRAEL JOURNAL OF MATHEMATICS, 2003, 138 (1) :125-138
[8]  
GUO WB, 1997, THEORY GROUP CLASSE
[9]  
GUO WB, 2001, 21 GOM U
[10]  
GUO WB, 2003, CONDITIONALLY PERMUT