Random Lindblad equations from complex environments

被引:68
作者
Budini, AA [1 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
来源
PHYSICAL REVIEW E | 2005年 / 72卷 / 05期
关键词
D O I
10.1103/PhysRevE.72.056106
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this paper we demonstrate that Lindblad equations characterized by a random rate variable arise after tracing out a complex structured reservoir. Our results follows from a generalization of the Born-Markov approximation, which relies on the possibility of splitting the complex environment into a direct sum of subreservoirs, each one being able to induce by itself a Markovian system evolution. Strong non-Markovian effects, which microscopically originate from the entanglement with the different subreservoirs, characterize the average system decay dynamics. As an example, we study the anomalous irreversible behavior of a quantum tunneling system described in an effective two-level approximation. Stretched exponential and power law decay behaviors arise from the interplay between the dissipative and unitary hopping dynamics.
引用
收藏
页数:11
相关论文
共 50 条
[31]   Coherence correlations in the dissipative two-state system [J].
Lang, G ;
Paladino, E ;
Weiss, U .
PHYSICAL REVIEW E, 1998, 58 (04) :4288-4298
[32]   DYNAMICS OF THE DISSIPATIVE 2-STATE SYSTEM (VOL 59, PG 1, 1987) [J].
LEGGETT, AJ ;
CHAKRAVARTY, S ;
DORSEY, AT ;
FISHER, MPA ;
GARG, A ;
ZWERGER, W .
REVIEWS OF MODERN PHYSICS, 1995, 67 (03) :725-726
[33]   DYNAMICS OF THE DISSIPATIVE 2-STATE SYSTEM [J].
LEGGETT, AJ ;
CHAKRAVARTY, S ;
DORSEY, AT ;
FISHER, MPA ;
GARG, A ;
ZWERGER, W .
REVIEWS OF MODERN PHYSICS, 1987, 59 (01) :1-85
[34]   Random-matrix model for quantum Brownian motion [J].
Lutz, E .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2001, 9 (03) :369-373
[35]   Universality of quantum Brownian motion [J].
Lutz, E ;
Weidenmüller, HA .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1999, 267 (3-4) :354-374
[36]   Dephasing of solid-state qubits at optimal points [J].
Makhlin, Y ;
Shnirman, A .
PHYSICAL REVIEW LETTERS, 2004, 92 (17) :178301-1
[37]   Quantum-state engineering with Josephson-junction devices [J].
Makhlin, Y ;
Schön, G ;
Shnirman, A .
REVIEWS OF MODERN PHYSICS, 2001, 73 (02) :357-400
[38]   Non-Markovian evolution of the density operator in the presence of strong laser fields [J].
Meier, C ;
Tannor, DJ .
JOURNAL OF CHEMICAL PHYSICS, 1999, 111 (08) :3365-3376
[39]   The random walk's guide to anomalous diffusion: a fractional dynamics approach [J].
Metzler, R ;
Klafter, J .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 339 (01) :1-77
[40]  
MISRA B, 1977, J MATH PHYS, V18, P756, DOI 10.1063/1.523304