Facial expression recognition using local binary patterns and discriminant kernel locally linear embedding

被引:68
作者
Zhao, Xiaoming [2 ]
Zhang, Shiqing [1 ]
机构
[1] Taizhou Univ, Sch Phys & Elect Engn, Taizhou 318000, Peoples R China
[2] Taizhou Univ, Dept Comp Sci, Taizhou 318000, Peoples R China
来源
EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING | 2012年
关键词
manifold learning; locally linear embedding; facial expression recognition; MANIFOLD; CLASSIFICATION;
D O I
10.1186/1687-6180-2012-20
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Given the nonlinear manifold structure of facial images, a new kernel-based supervised manifold learning algorithm based on locally linear embedding (LLE), called discriminant kernel locally linear embedding (DKLLE), is proposed for facial expression recognition. The proposed DKLLE aims to nonlinearly extract the discriminant information by maximizing the interclass scatter while minimizing the intraclass scatter in a reproducing kernel Hilbert space. DKLLE is compared with LLE, supervised locally linear embedding (SLLE), principal component analysis (PCA), linear discriminant analysis (LDA), kernel principal component analysis (KPCA), and kernel linear discriminant analysis (KLDA). Experimental results on two benchmarking facial expression databases, i.e., the JAFFE database and the Cohn-Kanade database, demonstrate the effectiveness and promising performance of DKLLE.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 35 条
[21]   Think globally, fit locally: Unsupervised learning of low dimensional manifolds [J].
Saul, LK ;
Roweis, ST .
JOURNAL OF MACHINE LEARNING RESEARCH, 2004, 4 (02) :119-155
[22]   Nonlinear component analysis as a kernel eigenvalue problem [J].
Scholkopf, B ;
Smola, A ;
Muller, KR .
NEURAL COMPUTATION, 1998, 10 (05) :1299-1319
[23]  
Schölkopf B, 2001, ADV NEUR IN, V13, P301
[24]   Authentic facial expression analysis [J].
Sebe, N. ;
Lew, M. S. ;
Sun, Y. ;
Cohen, I. ;
Gevers, T. ;
Huang, T. S. .
IMAGE AND VISION COMPUTING, 2007, 25 (12) :1856-1863
[25]   Facial expression recognition based on Local Binary Patterns: A comprehensive study [J].
Shan, Caifeng ;
Gong, Shaogang ;
McOwan, Peter W. .
IMAGE AND VISION COMPUTING, 2009, 27 (06) :803-816
[26]  
Shan CF, 2005, LECT NOTES COMPUT SC, V3766, P221, DOI 10.1007/11573425_22
[27]  
Shen L, 2006, EURASIP J ADV SIGNAL, V2006, P11
[28]   A global geometric framework for nonlinear dimensionality reduction [J].
Tenenbaum, JB ;
de Silva, V ;
Langford, JC .
SCIENCE, 2000, 290 (5500) :2319-+
[29]   Recognizing action units for facial expression analysis [J].
Tian, YI ;
Kanade, T ;
Cohn, JF .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2001, 23 (02) :97-115
[30]  
Tian YL, 2005, HANDBOOK OF FACE RECOGNITION, P247, DOI 10.1007/0-387-27257-7_12