Pretreatment of lignocellulosic materials for efficient bioethanol production

被引:668
作者
Galbe, Mats [1 ]
Zacchi, Guido [1 ]
机构
[1] Lund Univ, Dept Chem Engn, S-22100 Lund, Sweden
来源
BIOFUELS | 2007年 / 108卷
关键词
assessment; enzymatic hydrolysis; lignocellulose; pretreatment; review;
D O I
10.1007/10_2007_070
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Second-generation bioethanol produced from various lignocellulosic materials, such as wood, agricultural or forest residues, has the potential to be a valuable substitute for, or a complement to, gasoline. One of the crucial steps in the ethanol production is the hydrolysis of the hemicellulose and cellulose to monomer sugars. The most promising method for hydrolysis of cellulose to glucose is by use of enzymes, i.e. cellulases. However, in order to make the raw material accessible to the enzymes some kind of pretreatment is necessary. During the last few years a large number of pretreatment methods have been developed, comprising methods working at low PH, i.e. acid based, medium PH (without addition of catalysts), and high PH, i.e. with a base as catalyst. Many methods have been shown to result in high sugar yields, above 90% of theoretical for agricultural residues, especially for corn stover. For more recalcitrant materials, e.g. softwood, acid hydrolysis and steam pretreatment with acid catalyst seem to be the methods that can be used to obtain high sugar and ethanol yields. However, for more accurate comparison of different pretreatment methods it is necessary to improve the assessment methods under real process conditions. The whole process must be considered when a performance evaluation is to be made, as the various pretreatment methods give different types of materials. (Hemicellulose sugars can be obtained either in the liquid as monomer or oligomer sugars, or in the solid material to various extents; lignin can be either in the liquid or remain in the solid part; the composition and amount/concentration of possible inhibitory compounds also vary.) This will affect how the enzymatic hydrolysis should be performed (e.g. with or without hemicellulases), how the lignin is recovered and also the use of the lignin co-product.
引用
收藏
页码:41 / 65
页数:25
相关论文
共 89 条
[11]  
3.0.CO
[12]  
2-C]
[13]   STEAM-EXPLOSION PRETREATMENT OF WOOD - EFFECT OF CHIP SIZE, ACID, MOISTURE-CONTENT AND PRESSURE-DROP [J].
BROWNELL, HH ;
YU, EKC ;
SADDLER, JN .
BIOTECHNOLOGY AND BIOENGINEERING, 1986, 28 (06) :792-801
[14]   Effect of inhibitors released during steam-explosion treatment of poplar wood on subsequent enzymatic hydrolysis and SSF [J].
Cantarella, M ;
Cantarella, L ;
Gallifuoco, A ;
Spera, A ;
Alfani, F .
BIOTECHNOLOGY PROGRESS, 2004, 20 (01) :200-206
[15]   Enhanced enzymatic hydrolysis of olive tree wood by steam explosion and alkaline peroxide delignification [J].
Cara, C ;
Ruiz, E ;
Ballesteros, I ;
Negro, MJ ;
Castro, E .
PROCESS BIOCHEMISTRY, 2006, 41 (02) :423-429
[16]   Simultaneous saccharification and fermentation of lime-treated biomass [J].
Chang, VS ;
Kaar, WE ;
Burr, B ;
Holtzapple, MT .
BIOTECHNOLOGY LETTERS, 2001, 23 (16) :1327-1333
[17]   ORGANOSOLV PRETREATMENT FOR ENZYMATIC-HYDROLYSIS OF POPLARS .2. CATALYST EFFECTS AND THE COMBINED SEVERITY PARAMETER [J].
CHUM, HL ;
JOHNSON, DK ;
BLACK, SK .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1990, 29 (02) :156-162
[18]   STEAM EXPLOSION OF THE SOFTWOOD PINUS-RADIATA WITH SULFUR-DIOXIDE ADDITION .1. PROCESS OPTIMIZATION [J].
CLARK, TA ;
MACKIE, KL .
JOURNAL OF WOOD CHEMISTRY AND TECHNOLOGY, 1987, 7 (03) :373-403
[19]   Complete and efficient enzymic hydrolysis of pretreated wheat straw [J].
Curreli, N ;
Agelli, M ;
Pisu, B ;
Rescigno, A ;
Sanjust, E ;
Rinaldi, A .
PROCESS BIOCHEMISTRY, 2002, 37 (09) :937-941
[20]  
DALE BE, 1982, BIOTECHNOL BIOENG, P31