Spatial and temporal expression of two cytosolic glutamine synthetase genes in Scots pine:: functional implications on nitrogen metabolism during early stages of conifer development

被引:53
作者
Avila, C
Suárez, MF
Gómez-Maldonado, J
Cánovas, FM
机构
[1] Univ Malaga, Fac Ciencias, Dept Bioquim & Biol Mol, E-29071 Malaga, Spain
[2] Univ Malaga, Fac Ciencias, Inst Andaluz Biotecnol, E-29071 Malaga, Spain
关键词
N metabolism; cytosolic glutamine synthetase; conifer; gene expression; gene family; in situ hybridization;
D O I
10.1046/j.1365-313x.2001.00938.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Ammonium assimilation during the initial stages of Scots pine growth involves two cytosolic glutamine synthetase (GS, EC: 6.3.1.2) isoenzymes encoded by separate genes, GS1a and GS1b. GS1a was most exclusively expressed in photosynthetic tissues of the seedling whereas GS1b was expressed ubiquitously showing higher levels in non-photosynthetic tissues such as root and hypocotyl. Temporal expression analysis has shown that when germination starts GS1b is the predominant form in the embryo, however, its relative abundance in the tissue decreased in the postgerminative stages when green cotyledons are developed. In contrast GS1a was present at a low level in the embryo but its abundance increased markedly during germination and seedling growth. These data suggest that GS1a and GS1b genes display different and non-redundant roles in the nitrogen metabolism of conifers. The precise localization of individual transcripts by in situ hybridization strongly supports this possibility. GS1 gene products are mainly expressed in different cellular types: GS1a in chlorophylic parenchyma and GS1b in the vascular bundles of all tissues examined in the seedling. Our data support that glutamine biosynthesis in pine seedlings follows a different pattern related to angiosperms involving two cytosolic GS proteins: one of them a typical cytosolic GS which may be involved in the generation of glutamine for N transport and a second cytosolic GS generating amino donors for the biosynthesis of major N compounds in photosynthetic tissues, a closer role to angiosperm chloroplastic GS. The results are discussed with regard to recent studies on N mobilization and metabolism during the initial stages of conifer development.
引用
收藏
页码:93 / 102
页数:10
相关论文
共 43 条
  • [1] SEED STORAGE PROTEINS FROM PINUS-PINASTER AIT - HOMOLOGY OF MAJOR COMPONENTS WITH 11S PROTEINS FROM ANGIOSPERMS
    ALLONA, I
    CASADO, R
    ARAGONCILLO, C
    [J]. PLANT SCIENCE, 1992, 87 (01) : 9 - 18
  • [2] 2S ARGININE-RICH PROTEINS FROM PINUS-PINASTER SEEDS
    ALLONA, I
    COLLADA, C
    CASADO, R
    ARAGONCILLO, C
    [J]. TREE PHYSIOLOGY, 1994, 14 (02) : 211 - 218
  • [3] [Anonymous], MAIZE HDB
  • [4] Ausubel F. M., 1999, SHORT PROTOCOLS MOL
  • [5] Effects of phosphinotricin treatment on glutamine synthetase isoforms in Scots pine seedlings
    Avila, C
    García-Gutiérrez, A
    Crespillo, R
    Cánovas, FM
    [J]. PLANT PHYSIOLOGY AND BIOCHEMISTRY, 1998, 36 (12) : 857 - 863
  • [6] A role for cytosolic glutamine synthetase in the remobilization of leaf nitrogen during water stress in tomato
    Bauer, D
    Biehler, K
    Fock, H
    Carrayol, E
    Hirel, B
    Migge, A
    Becker, TW
    [J]. PHYSIOLOGIA PLANTARUM, 1997, 99 (02) : 241 - 248
  • [7] BISWAS C, 1997, DYMNOSPERMS
  • [8] Glutamine synthetase in the phloem plays a major role in controlling proline production
    Brugière, N
    Dubois, F
    Limami, AM
    Lelandais, M
    Roux, Y
    Sangwan, RS
    Hirel, B
    [J]. PLANT CELL, 1999, 11 (10) : 1995 - 2011
  • [9] Leaf senescence in Brassica napus: Cloning of senescence related genes by subtractive hybridisation
    BuchananWollaston, V
    Ainsworth, C
    [J]. PLANT MOLECULAR BIOLOGY, 1997, 33 (05) : 821 - 834
  • [10] Pattern of differentiation of the first vascular elements in the embryo and seedling of Arabidopsis thaliana
    Busse, JS
    Evert, RF
    [J]. INTERNATIONAL JOURNAL OF PLANT SCIENCES, 1999, 160 (01) : 1 - 13