Approximate and low regularity Dirichlet boundary conditions in the Generalized Finite Element Method

被引:5
作者
Babuska, Ivo [1 ]
Nistor, Victor [2 ]
Tarfulea, Nicolae [3 ]
机构
[1] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[3] Purdue Univ Calumet, Dept Math, Hammond, IN 46323 USA
基金
美国国家科学基金会;
关键词
Generalized Finite Element Method; Dirichlet boundary conditions; distributional data;
D O I
10.1142/S0218202507002571
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a method for treating Dirichlet boundary conditions for the Laplacian in the framework of the Generalized Finite Element Method (GFEM). A particular interest is taken in boundary data with low regularity (possibly a distribution). Our method is based on using approximate Dirichlet boundary conditions and polynomial approximations of the boundary. The sequence of GFEM-spaces consists of nonzero boundary value functions, and hence it does not conform to one of the basic Finite Element Method (FEM) conditions. We obtain quasi-optimal rates of convergence for the sequence of GFEM approximations of the exact solution. We also extend our results to the inhomogeneous Dirichlet boundary value problem, including the case when the boundary data has low regularity (i.e. is a distribution). Finally, we indicate an effective technique for constructing sequences of GFEM-spaces satisfying our assumptions by using polynomial approximations of the boundary.
引用
收藏
页码:2115 / 2142
页数:28
相关论文
共 37 条
[1]  
Agmon S., 1965, Van Nostrand Mathematical Studies
[2]  
[Anonymous], 1968, TRAVAUX RECHERCHES M
[3]  
[Anonymous], 1991, HDB NUMER ANAL
[4]   Interior numerical approximation of boundary value problems with a distributional data [J].
Babuska, I ;
Nistor, V .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2006, 22 (01) :79-113
[5]  
Babuska I., 2003, Acta Numerica, V12, P1, DOI 10.1017/S0962492902000090
[6]   ERROR-BOUNDS FOR FINITE ELEMENT METHOD [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1971, 16 (04) :322-&
[7]   SPECIAL FINITE-ELEMENT METHODS FOR A CLASS OF 2ND-ORDER ELLIPTIC PROBLEMS WITH ROUGH COEFFICIENTS [J].
BABUSKA, I ;
CALOZ, G ;
OSBORN, JE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (04) :945-981
[8]  
Babuska I, 1997, INT J NUMER METH ENG, V40, P727, DOI 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO
[9]  
2-N
[10]  
BABUSKA I, UNPUB NUMERICAL IMPL