Ergodic properties of the quantum ideal gas in the Maxwell-Boltzmann statistics

被引:6
作者
Lenci, M
机构
[1] Dipartimento di Matematica, Università di Bologna
[2] Department of Mathematics, Princeton University, Princeton
关键词
D O I
10.1063/1.531684
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is proved that the quantization of the Volkovyski-Sinai model of ideal gas (in the Maxwell-Boltzmann statistics) enjoys at the thermodynamical limit the property of quantum mixing in the following sense: lim(\t\-->infinity) lim(m,L-->infinity) lim(m,L-->infinity/m/L-->rho) omega(beta,L)(m) (e(iHmt/h) x Ae(-iHmt/h) B) = lim(m,L-->infinity/m/L-->rho) omega(beta,L)(m) (A). lim(m,L-->infinity/m/L-->rho) omega(beta,L)(m) (B). Here Hm is the Schrodinger operator of m free particles moving on a circle of length L:A and B are the Weyl quantization of two classical observables a and b; omega(beta,L)(m) (A) is the corresponding quantum Gibbs state. Moreover, one has lim(m,L-->infinity/m/L-->rho) omega(beta,m) (A) = P-rho,P-beta(alpha), where P-rho,P-beta(alpha) is the classical Gibbs measure. The consequent notion of quantum ergodicity is also independently proven. (C) 1996 American Institute of Physics.
引用
收藏
页码:5136 / 5157
页数:22
相关论文
共 15 条
[1]  
Benatti F, 1993, DETERMINISTIC CHAOS
[2]  
BRATTELI O, 1987, TEXT MONOGRAPHS PHYS, V1
[3]  
DEBIEVRE S, 1993, P 11 WORKSH GEOM MET
[4]  
FOLLAND G, 1988, HARMONIC ANAL PHASE
[5]  
GOLDSTEIN S, 1974, LECTURES NOTES PHYSI, V38, P144
[6]   Ergodic properties of infinite quantum harmonic crystals: An analytic approach [J].
Graffi, S ;
Martinez, A .
JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (10) :5111-5135
[7]   CHAOTIC QUANTUM PHENOMENA WITHOUT CLASSICAL COUNTERPART [J].
JONALASINIO, G ;
PRESILLA, C ;
CAPASSO, F .
PHYSICAL REVIEW LETTERS, 1992, 68 (15) :2269-2272
[8]  
JONALASINIO G, CHAOTIC PROPERTIES Q
[9]  
Perelomov A., 1986, TEXTS MONOGRAPHS PHY
[10]  
REED M., 1978, Methods of Modern Mathematical Physics, VIV