Ergodic properties of infinite quantum harmonic crystals: An analytic approach

被引:9
作者
Graffi, S [1 ]
Martinez, A [1 ]
机构
[1] UNIV PARIS 13, DEPT MATH, CNRS URA 742, F-93430 VILLETANEUSE, FRANCE
关键词
D O I
10.1063/1.531741
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove that the quantum dynamics of a class of infinite harmonic crystals becomes ergodic and mixing in the following sense: if H-m is the m-particle Schrodinger operator, omega(beta,m) (A)=Tr(A exp-beta H-m)/Tr(exp-beta H-m) the corresponding quantum Gibbs distribution over the observables A, B, psi(m,lambda) the coherent states in he mth particle Hilbert space, g(m,lambda)=(exp=beta H-m) psi(m,lambda) then lim(t-->infinity) lim(n-->infinity) lim(m-->infinity)(1/T) integral(0)(T)[e(iHnt)psi(m,lambda), psi(m,lambda)] dt = lim(m-->infinity) omega(beta,m) (A) if the classical infinite dynamics is ergodic, and lim(t-->infinity) lim(n-->infinity) lim(m-->infinity) omega(beta,m) (e(iHnt)Ae(-iHnt)B) = lim(m-->infinity) omega(beta,m) (A) lim(m-->infinity) omega(beta,m) (B) if it is in addition mixing. The classical ergodicity and mixing properties are recovered as h-->0, and lim(m-->infinity) omega(beta,m) (A) turns out to be the average over a classical Gibbs measure of the symbol generating A under Weyl quantization. (C) 1996 American Institute of Physics.
引用
收藏
页码:5111 / 5135
页数:25
相关论文
共 25 条
[1]  
Benatti F, 1993, DETERMINISTIC CHAOS
[2]  
Berezin F. A., 1991, Mathematics and its Applications (Soviet Series), Vfirst
[3]  
Bratteli O., 1979, Operator Algebras and Quantum Statistical Mechanics, V1
[4]   TRANSIENT CHAOS IN QUANTUM AND CLASSICAL MECHANICS [J].
CHIRIKOV, BV .
FOUNDATIONS OF PHYSICS, 1986, 16 (01) :39-49
[5]  
DEVERDIERE YC, 1985, COMMUN MATH PHYS, V102, P497
[6]   CLASSICAL LIMIT OF THE QUANTIZED HYPERBOLIC TORAL AUTOMORPHISMS [J].
ESPOSTI, MD ;
GRAFFI, S ;
ISOLA, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 167 (03) :471-507
[7]  
FOLLAND G, 1988, HARMONIC ANAL PHASE
[8]  
GRAFFI S, UNPUB
[9]   ERGODICITY AND SEMICLASSICAL LIMITS [J].
HELFFER, B ;
MARTINEZ, A ;
ROBERT, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 109 (02) :313-326
[10]   UNIVERSAL ESTIMATE OF THE GAP FOR THE KAC OPERATOR IN THE CONVEX CASE [J].
HELFFER, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 161 (03) :631-643