CLASSICAL LIMIT OF THE QUANTIZED HYPERBOLIC TORAL AUTOMORPHISMS

被引:77
作者
ESPOSTI, MD
GRAFFI, S
ISOLA, S
机构
[1] Departmento di Matematica, Università di Bologna, Bologna
关键词
D O I
10.1007/BF02101532
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The canonical quantization of any hyperbolic symplectomorphism A of the 2-torus yields a periodic unitary operator on a N-dimensional Hilbert space, N = 1/h. We prove that this quantum system becomes ergodic and mixing at the classical limit (N --> infinity, N prime) which can be interchanged with the time-average limit. The recovery of the stochastic behaviour out of a periodic one is based on the same mechanism under which the uniform distribution of the classical periodic orbits reproduces the Lebesgue measure: the Wigner functions of the eigenstates, supported on the classical periodic orbits, are indeed proved to become uniformly spread in phase space.
引用
收藏
页码:471 / 507
页数:37
相关论文
共 34 条
[1]  
Analytic Technologies, 2010, INTRO ANAL NUMBER TH
[2]  
Apostol T. M., 1976, INTRO ANAL NUMBER TH, DOI DOI 10.1007/978-1-4757-5579-4
[3]  
ARNOLD V. I., 1968, ERGODIC PROBLEMS CLA
[4]   IDEAL ORBITS OF TORAL AUTOMORPHISMS [J].
BARTUCCELLI, M ;
VIVALDI, F .
PHYSICA D, 1989, 39 (2-3) :194-204
[5]   A NONCOMMUTATIVE VERSION OF THE ARNOLD CAT MAP [J].
BENATTI, F ;
NARNHOFER, H ;
SEWELL, GL .
LETTERS IN MATHEMATICAL PHYSICS, 1991, 21 (02) :157-172
[6]  
DAVENPORT H, 1932, REINE J ANGEWANDTE M, V78, P158
[7]  
DELIGNE P, 1974, PUBL MATH IHES, V48, P273
[8]  
DEVERDIERE YC, 1985, COMMUN MATH PHYS, V102, P497
[9]   EXACT EIGENFUNCTIONS FOR A QUANTIZED MAP [J].
ECKHARDT, B .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (10) :1823-1831
[10]   QUANTUM-MECHANICS OF CLASSICALLY NON-INTEGRABLE SYSTEMS [J].
ECKHARDT, B .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1988, 163 (04) :205-297