CLASSICAL LIMIT OF THE QUANTIZED HYPERBOLIC TORAL AUTOMORPHISMS

被引:77
作者
ESPOSTI, MD
GRAFFI, S
ISOLA, S
机构
[1] Departmento di Matematica, Università di Bologna, Bologna
关键词
D O I
10.1007/BF02101532
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The canonical quantization of any hyperbolic symplectomorphism A of the 2-torus yields a periodic unitary operator on a N-dimensional Hilbert space, N = 1/h. We prove that this quantum system becomes ergodic and mixing at the classical limit (N --> infinity, N prime) which can be interchanged with the time-average limit. The recovery of the stochastic behaviour out of a periodic one is based on the same mechanism under which the uniform distribution of the classical periodic orbits reproduces the Lebesgue measure: the Wigner functions of the eigenstates, supported on the classical periodic orbits, are indeed proved to become uniformly spread in phase space.
引用
收藏
页码:471 / 507
页数:37
相关论文
共 34 条
[21]   ON THE QUANTIZATION OF ARNOLD CAT [J].
KNABE, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (11) :2013-2025
[22]   CHAOS-REVEALING MULTIPLICATIVE REPRESENTATION OF QUANTUM EIGENSTATES [J].
LEBOEUF, P ;
VOROS, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (10) :1765-1774
[23]  
Levy Silvio, 1987, ERGODIC THEORY DIFFE
[24]   ARTIN CONJECTURE FOR PRIMITIVE ROOTS [J].
MURTY, MR .
MATHEMATICAL INTELLIGENCER, 1988, 10 (04) :59-67
[25]   QUANTIZED ARNOLD CAT MAPS CAN BE ENTROPIC K-SYSTEMS [J].
NARNHOFER, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (04) :1502-1510
[26]  
PARRY W, 1990, ASTERISQUE, V187
[27]   ARITHMETICAL PROPERTIES OF STRONGLY CHAOTIC MOTIONS [J].
PERCIVAL, I ;
VIVALDI, F .
PHYSICA D, 1987, 25 (1-3) :105-130
[28]  
SARNAK P, IN PRESS 1993 TEL AV
[29]  
Schnirelman A., 1974, USP MAT NAUK, V29, P181
[30]  
von Neumann J, 1929, Z PHYS, V57, P30