Prepenetration apparatus assembly precedes and predicts the colonization patterns of arbuscular mycorrhizal fungi within the root cortex of both Medicago truncatula and Daucus carota

被引:216
作者
Genre, Andrea [1 ]
Chabaud, Mireille [2 ]
Faccio, Antonella [1 ]
Barker, David G. [2 ]
Bonfante, Paola [1 ]
机构
[1] Univ Turin, Ist Protezione Piante Consiglio Nazl Ric, Dept Plant Biol, I-10125 Turin, Italy
[2] INRA, CNRS, Unite Mixte Rech, Lab Plant Microbe Interact, F-31320 Castanet Tolosan, France
关键词
D O I
10.1105/tpc.108.059014
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Arbuscular mycorrhizas (AM) are widespread, ancient endosymbiotic associations that contribute significantly to soil nutrient uptake in plants. We have previously shown that initial fungal penetration of the host root is mediated via a specialized cytoplasmic assembly called the prepenetration apparatus (PPA), which directs AM hyphae through the epidermis (Genre et al., 2005). In vivo confocal microscopy studies performed on Medicago truncatula and Daucus carota, host plants with different patterns of AM colonization, now reveal that subsequent intracellular growth across the root outer cortex is also PPA dependent. On the other hand, inner root cortical colonization leading to arbuscule development involves more varied and complex PPA-related mechanisms. In particular, a striking alignment of polarized PPAs can be observed in adjacent inner cortical cells of D. carota, correlating with the intracellular root colonization strategy of this plant. Ultrastructural analysis of these PPA-containing cells reveals intense membrane trafficking coupled with nuclear enlargement and remodeling, typical features of arbusculated cells. Taken together, these findings imply that prepenetration responses are both conserved and modulated throughout the AM symbiosis as a function of the different stages of fungal accommodation and the host-specific pattern of root colonization. We propose a model for intracellular AM fungal accommodation integrating peri-arbuscular interface formation and the regulation of functional arbuscule development.
引用
收藏
页码:1407 / 1420
页数:14
相关论文
共 35 条
[1]   Multivesicular bodies participate in a cell wall-associated defence response in barley leaves attacked by the pathogenic powdery mildew fungus [J].
An, QL ;
Hückelhoven, R ;
Kogel, KH ;
Van Bel, AJE .
CELLULAR MICROBIOLOGY, 2006, 8 (06) :1009-1019
[2]  
[Anonymous], 2001, MYCOTA 9 FUNGAL ASS
[3]   THE PLANT NUCLEUS IN MYCORRHIZAL ROOTS - POSITIONAL AND STRUCTURAL MODIFICATIONS [J].
BALESTRINI, R ;
BERTA, G ;
BONFANTE, P .
BIOLOGY OF THE CELL, 1992, 75 (03) :235-243
[4]   Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculated cells [J].
Balestrini, Raffaella ;
Gomez-Ariza, Jorge ;
Lanfranco, Luisa ;
Bonfante, Paola .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2007, 20 (09) :1055-1062
[5]   EARLY EVENTS OF VESICULAR ARBUSCULAR MYCORRHIZA FORMATION ON RI T-DNA TRANSFORMED ROOTS [J].
BECARD, G ;
FORTIN, JA .
NEW PHYTOLOGIST, 1988, 108 (02) :211-218
[6]   Membrane trafficking during plant cytokinesis [J].
Bednarek, SY ;
Falbel, TG .
TRAFFIC, 2002, 3 (09) :621-629
[7]   Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations [J].
Boisson-Dernier, A ;
Chabaud, M ;
Garcia, F ;
Bécard, G ;
Rosenberg, C ;
Barker, DG .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2001, 14 (06) :695-700
[8]   TANSLEY-REVIEW NO-82 - STRATEGIES OF ARBUSCULAR MYCORRHIZAL FUNGI WHEN INFECTING HOST PLANTS [J].
BONFANTE, P ;
PEROTTO, S .
NEW PHYTOLOGIST, 1995, 130 (01) :3-21
[9]   Targeted inoculation of Medicago truncatula in vitro root cultures reveals MtENOD11 expression during early stages of infection by arbuscular mycorrhizal fungi [J].
Chabaud, M ;
Venard, C ;
Defaux-Petras, A ;
Bécard, G ;
Barker, DG .
NEW PHYTOLOGIST, 2002, 156 (02) :265-273
[10]   Distinct roles of Lotus japonicus SYMRK and SYM15 in root colonization and arbuscule formation [J].
Demchenko, K ;
Winzer, T ;
Stougaard, J ;
Parniske, M ;
Pawlowski, K .
NEW PHYTOLOGIST, 2004, 163 (02) :381-392