Analysis of data sets of stochastic systems

被引:230
作者
Siegert, S
Friedrich, R
Peinke, J
机构
[1] Univ Stuttgart, Inst Theoret Phys, D-70550 Stuttgart, Germany
[2] Univ Bayreuth, D-95447 Bayreuth, Germany
关键词
D O I
10.1016/S0375-9601(98)00283-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper deals with the analysis of data sets of stochastic systems which can be described by a Langevin equation. By the method presented in this paper drift and diffusion terms of the corresponding Fokker-Planck equation can be extracted from the noisy data sets, and deterministic laws and fluctuating forces of the dynamics can be identified. The method is validated by the application to simulated one- and two-dimensional noisy data sets. (C) 1998 Published by Elsevier Science B.V.
引用
收藏
页码:275 / 280
页数:6
相关论文
共 12 条
[1]  
[Anonymous], 1980, Theory and Application of Stochastic Differential Equations, DOI DOI 10.1063/1.2914346
[2]  
BORLAND LM, 1993, THESIS U STUTTGART
[3]   A note on three-point statistics of velocity increments in turbulence [J].
Friedrich, R ;
Zeller, J ;
Peinke, J .
EUROPHYSICS LETTERS, 1998, 41 (02) :153-158
[4]   Statistical properties of a turbulent cascade [J].
Friedrich, R ;
Peinke, J .
PHYSICA D, 1997, 102 (1-2) :147-155
[5]  
Haken H., 1990, Synergetik, V3rd ed
[6]  
Haken H., 1983, Advanced Synergetics
[7]  
HAKEN H, 1988, INFORMATION SELF ORG
[8]  
Honerkamp J, 1990, STOCHASTISCHE DYNAMI
[9]   THE RECONSTRUCTION OF THE FOKKER-PLANCK AND MASTER EQUATIONS ON THE BASIS OF EXPERIMENTAL DATA: H-THEOREM AND S-THEOREM [J].
Klimontovich, Yu. L. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (01) :119-129
[10]  
RISKEN H, 1989, FOKKERPLANCK EQUATIO