A note on three-point statistics of velocity increments in turbulence

被引:36
作者
Friedrich, R [1 ]
Zeller, J
Peinke, J
机构
[1] Univ Stuttgart, Inst Theoret Phys, D-70550 Stuttgart, Germany
[2] Univ Bayreuth, D-95447 Bayreuth, Germany
来源
EUROPHYSICS LETTERS | 1998年 / 41卷 / 02期
关键词
D O I
10.1209/epl/i1998-00124-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the joint probability functions f(v(3), L-3; v(2), L-2; v(1), L-1) for the velocity increments v(L) across scale L of a turbulent field measured in the helium gas jet experiment of Chabaud et al. (Chabaud B. et al., Phys. Rev. Lett., 73 (1994) 3227). We show that the conditional probability distribution p(v(3), L-3/v(2),L-2; v(1), L-1), L-1 > L-2 > L-3, becomes independent of v(1) and L-1 provided L-1 - L-2 > L-mar, where L-mar is comparable to the crossover scale from the inertial to the viscous subrange. This indicates that the N-point probability distributions f(v(N), L-N;...v(2), L-2; v(1), L-1) may be considered as a stochastic process exhibiting Markovian properties.
引用
收藏
页码:153 / 158
页数:6
相关论文
共 15 条
[1]   TRANSITION TOWARD DEVELOPED TURBULENCE [J].
CHABAUD, B ;
NAERT, A ;
PEINKE, J ;
CHILLA, F ;
CASTAING, B ;
HEBRAL, B .
PHYSICAL REVIEW LETTERS, 1994, 73 (24) :3227-3230
[2]   SCALE-INVARIANT MULTIPLIER DISTRIBUTIONS IN TURBULENCE [J].
CHHABRA, AB ;
SREENIVASAN, KR .
PHYSICAL REVIEW LETTERS, 1992, 68 (18) :2762-2765
[3]   NEGATIVE DIMENSIONS - THEORY, COMPUTATION, AND EXPERIMENT [J].
CHHABRA, AB ;
SREENIVASAN, KR .
PHYSICAL REVIEW A, 1991, 43 (02) :1114-1117
[4]   Description of a turbulent cascade by a Fokker-Planck equation [J].
Friedrich, R ;
Peinke, J .
PHYSICAL REVIEW LETTERS, 1997, 78 (05) :863-866
[5]   Statistical properties of a turbulent cascade [J].
Friedrich, R ;
Peinke, J .
PHYSICA D, 1997, 102 (1-2) :147-155
[6]  
Frisch U., 1995, TURBULENCE, DOI [10.1017/CBO9781139170666, DOI 10.1017/CBO9781139170666]
[7]   STOCHASTIC-PROCESSES - TIME EVOLUTION, SYMMETRIES AND LINEAR RESPONSE [J].
HANGGI, P ;
THOMAS, H .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1982, 88 (04) :207-319
[8]   Towards a nonperturbative theory of hydrodynamic turbulence: Fusion rules, exact bridge relations, and anomalous viscous scaling functions [J].
Lvov, V ;
Procaccia, I .
PHYSICAL REVIEW E, 1996, 54 (06) :6268-6284
[9]   NEGATIVE DIMENSIONS OF THE TURBULENT DISSIPATION FIELD [J].
MOLENAAR, J ;
HERWEIJER, J ;
VANDEWATER, W .
PHYSICAL REVIEW E, 1995, 52 (01) :496-509
[10]  
Monin A. S., 1971, Statistical fluid mechanics: mechanics of turbulence