Raman spectroscopy of graphene under ultrafast laser excitation

被引:84
作者
Ferrante, C. [1 ,2 ]
Virga, A. [1 ,2 ]
Benfatto, L. [3 ]
Martinati, M. [1 ]
De Fazio, D. [4 ]
Sassi, U. [4 ]
Fasolato, C. [1 ]
Ott, A. K. [4 ]
Postorino, P. [1 ]
Yoon, D. [4 ]
Cerullo, G. [5 ]
Mauri, F. [1 ,2 ]
Ferrari, A. C. [4 ]
Scopigno, T. [1 ,2 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[2] Ist Italiano Tecnol, Ctr Life Nano Sci Sapienza, I-00161 Rome, Italy
[3] UoS Sapienza, CNR, Inst Complex Syst, I-00185 Rome, Italy
[4] Univ Cambridge, Cambridge Graphene Ctr, Cambridge CB3 0FA, England
[5] Politecn Milan, IFN CNR, Dipartimento Fis, Pzza L Vinci 32, I-20133 Milan, Italy
来源
NATURE COMMUNICATIONS | 2018年 / 9卷
基金
英国工程与自然科学研究理事会;
关键词
MODE; SCATTERING; EMISSION; DYNAMICS; FILMS;
D O I
10.1038/s41467-017-02508-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The equilibrium optical phonons of graphene are well characterized in terms of anharmonicity and electron-phonon interactions; however, their non-equilibrium properties in the presence of hot charge carriers are still not fully explored. Here we study the Raman spectrum of graphene under ultrafast laser excitation with 3 ps pulses, which trade off between impulsive stimulation and spectral resolution. We localize energy into hot carriers, generating nonequilibrium temperatures in the similar to 1700-3100 K range, far exceeding that of the phonon bath, while simultaneously detecting the Raman response. The linewidths of both G and 2D peaks show an increase as function of the electronic temperature. We explain this as a result of the Dirac cones' broadening and electron-phonon scattering in the highly excited transient regime, important for the emerging field of graphene-based photonics and optoelectronics.
引用
收藏
页数:8
相关论文
共 71 条
[1]   Anomaly of optical phonon in monolayer graphene [J].
Ando, Tsuneya .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2006, 75 (12)
[2]   Temperature and layer number dependence of the G and 2D phonon energy and damping in graphene [J].
Apostolov, A. T. ;
Apostolova, I. N. ;
Wesselinowa, J. M. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2012, 24 (23)
[3]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[4]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[5]  
Baranov A. V., 1987, Optics and Spectroscopy, V62, P612
[6]   Electron-electron interactions and doping dependence of the two-phonon Raman intensity in graphene [J].
Basko, D. M. ;
Piscanec, S. ;
Ferrari, A. C. .
PHYSICAL REVIEW B, 2009, 80 (16)
[7]   Theory of resonant multiphonon Raman scattering in graphene [J].
Basko, D. M. .
PHYSICAL REVIEW B, 2008, 78 (12)
[8]   Electron and Optical Phonon Temperatures in Electrically Biased Graphene [J].
Berciaud, Stephane ;
Han, Melinda Y. ;
Mak, Kin Fai ;
Brus, Louis E. ;
Kim, Philip ;
Heinz, Tony F. .
PHYSICAL REVIEW LETTERS, 2010, 104 (22)
[9]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/nphoton.2010.186, 10.1038/NPHOTON.2010.186]
[10]   Production and processing of graphene and 2d crystals [J].
Bonaccorso, Francesco ;
Lombardo, Antonio ;
Hasan, Tawfique ;
Sun, Zhipei ;
Colombo, Luigi ;
Ferrari, Andrea C. .
MATERIALS TODAY, 2012, 15 (12) :564-589