Structural basis for the function of Clostridium difficile toxin B

被引:124
作者
Reinert, DJ
Jank, T
Aktories, K
Schulz, GE
机构
[1] Univ Freiburg, Inst Organ Chem & Biochem, D-79104 Freiburg, Germany
[2] Univ Freiburg, Inst Expt & Klin Pharmakol & Toxikol, D-79104 Freiburg, Germany
关键词
clostridial cytotoxins; glucosyltransfer reaction; glycosyltransferases; Rho proteins; X-ray structure analysis;
D O I
10.1016/j.jmb.2005.06.071
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Toxin B is a member of the family of large clostridial cytotoxins which are of great medical importance. Its catalytic fragment was crystallized in the presence of UDP-glucose and Mn2+. The structure was determined at 2.2 angstrom resolution, showing that toxin B belongs to the glycosyltransferase type A family. However, toxin B contains as many as 309 residues in addition to the common chainfold, which most likely contribute to the target specificity. A superposition with other glycosyltransferases shows the expected positions of the acceptor oxygen atom during glucosyl transfer and indicates further that the reaction proceeds probably along a single displacement pathway. The CV donor carbon atom position is defined by the bound UDP and glucose. It assigns the surface area of toxin B that forms the interface to the target protein during the modifying reaction. A docking attempt brought the known acceptor atom, Thr37 O-gamma 1 of the switch I region of the RhoA:GDP target structure, near the expected position. The relative orientation of the two proteins was consistent with both being attached to a membrane. Sequence comparisons between toxin B variants revealed that the highest exchange rate occurs around the active center at the putative docking interface, presumably due to a continuous hit-and-evasion struggle between Clostridia and their eukaryotic hosts. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:973 / 981
页数:9
相关论文
共 47 条
[1]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[2]   Structural basis of ordered binding of donor and acceptor substrates to the retaining glycosyltransferase, α-1,3-galactosyltransferase [J].
Boix, E ;
Zhang, YN ;
Swaminathan, GJ ;
Brew, K ;
Acharya, KR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (31) :28310-28318
[3]  
Brunger AT, 1998, ACTA CRYSTALLOGR D, V54, P905, DOI 10.1107/s0907444998003254
[4]   Microbial toxins and the glycosylation of Rho family GTPases [J].
Busch, C ;
Aktories, K .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2000, 10 (05) :528-535
[5]   Clostridium difficile toxins A and B are cation-dependent UDP-glucose hydrolases with differing catalytic activities [J].
Ciesla, WP ;
Bobak, DA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (26) :16021-16026
[6]   Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods [J].
delaFortelle, E ;
Bricogne, G .
MACROMOLECULAR CRYSTALLOGRAPHY, PT A, 1997, 276 :472-494
[7]   Rho GTPases in cell biology [J].
Etienne-Manneville, S ;
Hall, A .
NATURE, 2002, 420 (6916) :629-635
[8]   POVScript+:: a program for model and data visualization using persistence of vision ray-tracing [J].
Fenn, TD ;
Ringe, D ;
Petsko, GA .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2003, 36 (02) :944-947
[9]   Modelling protein docking using shape complementarity, electrostatics and biochemical information [J].
Gabb, HA ;
Jackson, RM ;
Sternberg, MJE .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 272 (01) :106-120
[10]   Bovine α1,3-galactosyltransferase catalytic domain structure and its relationship with ABO histo-blood group and glycosphingolipid glycosyltransferases [J].
Gastinel, LN ;
Bignon, C ;
Misra, AK ;
Hindsgaul, O ;
Shaper, JH ;
Joziasse, DH .
EMBO JOURNAL, 2001, 20 (04) :638-649